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UNCERTAINTY ANALYSIS OF RAINFALL-RUNOFF 
PREDICTIONS FOR A SMALL URBANIZED BASIN

1. INTRODUCTION
1.1. Overview of the problem

Present cities suffer more and more frequently from flooding and associated 
water qualitative problems due to climate and social changes (e.g. Rosso, Rulli 2002; 
Ott, Uhlenbrook 2004; Shepherd 2005; Schaefli et al. 2011). Thus, flooding is regar-
ded nowadays as the most damaging natural hazard (Ohl, Tapsell 2000; Opperman 
et al. 2009). 

Climate changes relevant for hydrological processes are generally identified 
with changes in air temperature and precipitation (volume and intensity) (Blöschl, 
Montanari 2010). Social changes are identified with the globally observed develop-
ment of cities (urbanization) and a human trend towards living in floodplains; areas 
periodically inundated by river overflows (Junk et al. 1989). Results are land-use 
changes such as deforestation, civil constructions, landscape replacements i.e. sub-
stituting natural and semi-natural (permeable) surfaces with artificial (impermeable) 
ones. As a consequence of land-scapes modifications, frequent but moderate flooding 
of previously rural areas is avoided, and rare but catastrophic flooding of currently 
urbanized or industrialized areas is exacerbated (Werner, McNamara 2007). Also, 
land-use changes are usually followed by decreasing chemical and ecological water 
quality resulting from wash-off of polluted surfaces during rainfall events (Obropta, 
Kardos 2007; Dietz, Clausen 2008). Most of pollutants introduced into water with 
stormwater are associated with sediment particles (Horowitz, Stephens 2008). 

As a consequence of changing conditions (climate and social), flood risk and 
associated water quality problems are dramatically increasing in many parts of the 
world (Milly et al. 2002; Rosso, Rulli 2002; Di Baldassarre et al. 2010). Especial-
ly Central-Eastern Europe is exposed to a high risk of future urban development 

M O N O G R A F I E  K O M I T E T U  G O S P O D A R K I  W O D N E J  PA N
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(UNFPA 2007), due to European Union (EU) enlargement and its economic and 
social consequences. Because the consequences of potential flooding pose a greater 
threat to population and infrastructure in urbanized than in rural areas (Yang et al. 
2010), urbanized areas are also of a higher concern in the hydrological community.

To assess the effects of changing basin conditions and propose mitigation stra-
tegies, urban planners and decision makers have to rely on hydrological model pre-
dictions from a design storm, long-term precipitation records or climate scenarios. 
This is not a trivial task. Most of all, because a hydrological model represents only 
a simplification of a real basin (Ratto et al. 2007). Due to its restricted structure tied 
up with its parameters, its ability to model the observed process, e.g. rainfall-runoff 
(RR), is limited. A calibration of model parameters with observed input-output data 
usually improves model predictions, resulting in model parameters which better re-
produce the observed patterns. Unfortunately, hydrological and meteorological ob-
servations and basin data are not generally available (Sivapalan 2003). This results 
in problems with model calibration and with providing reliable predictions. Thus, 
hydrological models suffer from i) input uncertainty, ii) structural limitations, iii) 
parameter uncertainty, and iv) output uncertainty (Sikorska et al. 2013).

In this regard, modelling in small urbanized basins, SUBs, is especially 
difficult. Hereafter, SUBs are defined as basins in which the ratio of urban sites has 
been significantly increased over time. The difficulties of hydrological modelling 
in SUBs have two main reasons. First, the influence of possible future climate and 
social changes on hydrological conditions in SUBs are hardly predictable due to 
a very small contributing area. And second, sufficient observed data are usually not 
available for SUBs (Sikorska et al. 2012a). In addition, because of a small contribu-
ting area and a very fast basin response to rainfall, frequent data records are required, 
which would be too costly to be implemented in the SUBs.

Consequently, rational urban water management should ideally consider not 
only the most probable prediction in terms of classical (deterministic) modelling but 
also the associated uncertainties (Krzysztofowicz 1983; Murphy 1991; Krzysztofo-
wicz 1999). Although providing exclusively qualitative information on prediction 
uncertainty (certain? / uncertain?) may take the possible risk into consideration, it 
cannot be practically introduced into water management. To this end, uncertainty 
of model predictions must be quantified (how much uncertain?). To this end, di-
verse uncertainty sources need to be formally (implicitly or explicitly) described. 
A formal description of the model structure errors is the most challenging because 
errors of hydrological models are usually strongly autocorrelated (e.g. Romanowicz 
et al. 1994; Kuczera et al. 2006; Sikorska et al. 2012a, b). This can be explained 
by the memory effect of the basin. Thus, the classical Gaussian model error, with 
identically (normally) and independently distributed (i.i.d.) errors, does not hold for 
hydrological models. A promising alternative was recently proposed by Yang et al. 
(2007, 2008), who investigated the autoregressive lumped error model to lump di-
verse uncertainty sources into a single error term. This error model accounts for the 
correlation apparent between hydrological model errors. Yet, this error model has 
not been widely recognized so far, especially in application to SUBs. In a similar 
fashion, the Gaussian model error does not hold for errors of the input variable, 
which usually is the rainfall for RR models. Such errors are usually time-dependent, 

Introduction10
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which can be explained by the variability in the intensity of rainfall fields, changing 
between the rainfall events. To capture this diversity in the input variable, it must be 
described by time-dependent parameters. Recently, a promising approach of rainfall 
multipliers has been proposed by Kavetski et al. (2006a, b) but has not been com-
monly applied in hydrology until now, especially in the SUBs. Furthermore, it is not 
clear how to formally describe errors in the output variable, typically streamflow 
for RR models, and more importantly how to include these errors into hydrological 
model predictions. 

Given aforementioned considerations, a feasible method to formally acknow-
ledge diverse sources of the predictive uncertainty (PU) in hydrological modelling 
and to quantify the aggregated total PU is needed. 

This work provides a formal approach for uncertainty analysis (UA) of rainfall-
-runoff (RR) predictions, particularly in small urbanized basins (SUBs). The term 
’formality’ implies that the computed uncertainty should be statistically correct, 
probabilistically interpretable and yet practically feasible. The proposed uncertainty 
analysis (UA) approach relies on Bayesian statistics as it proved to be conceptually 
more satisfactory than other uncertainty analysis approaches. To account for uncer-
tainty in RR modelling, a basin’s RR process is modelled as a stochastic process, 
which may evolve in many directions. To include the uncertainty in the model pre-
dictions, a traditional deterministic hydrological model, giving a single output, is 
combined with an error term. The proposed UA is innovative in two ways. First, it 
allows one to formally quantify the predictive uncertainty (PU) of RR by applying 
the state of-art Bayesian inference combined with the autoregressive error model to 
capture errors of model structural deficits. Second, it allows one to relatively assess 
the contribution of four main acknowledged uncertainty sources. This was not done 
before for SUBs. 

The main concern is given to rainfall-driven floods induced by stormwater 
(SW) runoffs. Thus, quantitative variables such as streamflow and water level are of 
interest because these are most relevant for flood risk studies.

The PU of RR predictions is investigated by means of two practical case stu-
dies, in which the usefulness of UA is demonstrated in its application to: 
1.	 streamflow prediction (1 variable, 1 model), 
2.	 water level prediction (1 variable, 2 submodels).

The UA approach is tested on chosen hydrological models in a small experi-
mental basin in Warsaw, Sluzew Creek, Poland. Because the Sluzew Creek basin, 
like a typical SUB, is not covered with a continuous monitoring program, an experi-
mental campaign has been performed in order to obtain sufficient data for the desired 
analysis. 

Although the UA approach was applied to SUB, it is independent from the 
experimental basin and the hydrological models. Therefore predictions within diverse 
models on basins with diverse land-use types can also be evaluated. Moreover, the 
approach is independent from analyzed hydrological characteristics and may be also 
applied to model water quality parameters.

Overview of the problem 11
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1.2. Research questions

1.	 How can the total predictive uncertainty (PU) of RR predictions in SUBs be 
practically quantified?

2.	 How can autocorrelated errors of hydrological models be practically and for-
mally acknowledged to provide reliable uncertainty predictions? Is the auto-
regressive lumped error model sufficient in describing errors of hydrological 
models for SUBs?

3.	 Is a rainfall multipliers approach with time-dependent parameters sufficient 
enough to capture and describe the variability in precipitation, as an input into 
RR models for SUBs?

4.	 How can output uncertainty of RR models, typically represented by measured 
streamflow, be formally acknowledged to investigate its influence on the total PU?

5.	 How can the total PU be incorporated into practical applications and can it be 
useful? How can the total PU be reduced and the model predictions improved?

6.	 How can consequences of future (climate or social) changes be predicted in 
SUBs with the scarce input-output variables data available? Are conceptual 
models with reduced complexity reliable in providing such predictions?

7.	 What is the influence of the monitoring and hydrological data situation in Cen-
tral-Eastern Europe on RR modelling in SUBs?

8.	 What are the main sources of the total PU in RR predictions in the Sluzew Creek basin?

2. RAINFALL-RUNOFF MODELLING IN 
SMALL URBANIZED BASINS (SUB)

2.1. Rainfall-driven flooding in SUB

2.1.1. Hydrological moddeling and its challenges

Hydrological modelling is an important tool to simulate real system (i.e. basin) 
response when statistical methods which require long-term data series cannot be ap-
plied. This includes such applications as predicting basin response under unknown 
future conditions in changing environment (climate or social), prolonging observed 
records or generating synthetic data (Ciepielowski, Dąbkowski 2006). To this end, 
a physical basin must be substituted with a conceptual version i.e. model that imi-
tates its behaviour (Wagener et al. 2003, Wagener, Montanari 2011), see Fig. 2.1. 
Such a hydrological model M is usually constructed as a perceptual and conceptual 
hydrologists’ belief and understanding of a physical basin behaviour. This belief is 
typically supported by extensive empirical data. Any model is represented through 
linking model parameters (θM) by mathematical relationships with the model input 
(X) and model output (y) (Wagener et al. 2004) and can be described: 

	 y = M (X, θM)	 (2.1)

Following Wagener et al. (2004), all hydrological models are lumped at some 
level because their parameters are simplified to represent a behaviour of a heteroge-

Rainfall-runoff modelling in small urbanized basins (SUB)12
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neous real world system as a homogeneous model’s cell (Fig. 2.1). A model’s cell 
represents the simplest model structure which is not further decomposed and has 
generalized characteristics over time and space, e.g. basin, sub-basin, hydro-layer, 
etc. Such simplification is necessary due to the human inability to observe all fac-
tors of basin patterns in sufficient enough details (as geology, hydrology, meteoro-
logy, evaporation, etc.) and to transmit these details to the model parameters in such 
a way that it would allow constructing a perfect model which identically reproduces 
observed variables. A hydrological model remains therefore only a simplification of 
a real basin and hence cannot perfectly reproduce a real basin response (Beck 1991). 
This results in deviations between predicted and observed variables. The accuracy of 
model predictions depends on several factors i.e.: model structure, selected parame-
ter values, external and/or initial model assumptions and others, see further Sect. 4.2. 

To reduce such deviations in predictions and to improve the model accuracy, 
usually three means can be considered: i) improving model structure, ii) adjusting 
model parameters or iii) collecting more and more accurate data. Improving the mo-
del structure usually leads to more complex models through involving additional 
parameters or input variables which allows better describing the process dynamics 
within the basin (Blöschl, Montanari 2010). This is not always possible because it 
usually requires additional data which may not be available. On the contrary, adju-
sting model parameters is simpler. To this end, a model is calibrated against recor-
ded input-output data in order to determine optimal parameters which give the best 
output simulation. The model thus better reproduces observed patterns and the simu-
lation accuracy improves. Adjusting model parameters during a calibration process 
leads, however, to a loss of some of their assumed a priori physical interpretation 
(Wagener, Gupta 2005). Such inferred parameters should therefore be referred as 
conceptual parameters or effective parameters (Romanowicz, Beven 2003) rather 
than physically-based parameters. Finally, collecting more and better data requires 
longer time and financial investment in measurement campaigns. In this regard, en-

Fig. 2.1. Basin versus model; reproduced from Wagener et al. 2004

Rainfall driven flooding in SUB 13
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suring high data quality is of higher importance than extending available observa-
tions. Better data in terms of quality and information content usually allow for better 
identification of model parameters. Yet, the improvement in model predictions is 
tied with the model structure and model ability to reproduce observed patterns (see 
further Sect. 4.2). 

Because it is extremely difficult to obtain satisfying model parameters only 
from physical basin characteristics, without considering any observed records, cali-
bration is crucial for most models (Wagener, Montanari 2011). Unfortunately, simple 
models may not satisfactorily imitate basin’s processes even after calibration due to 
excessive simplification (Beck 1991). Alternatively, complex models may require 
many data for their optimal calibration which often are cost-ineffective compared 
to the gained improvement in predictions (Montanari et al. 2009). Consequently, 
a chosen model represents usually a compromise between a very poor model (that 
behaves incorrect) and a very complex model with a large amount of parameters 
which cannot be determined due to an identifiability problem (Reichert 2012). Such 
a problem occurs when available data do not contain enough information to unequ-
ivocally identify optimal parameters and an ambiguity in representation and inter-
pretation of past observed patterns remains (Beck 1991).

The lack of calibration data (e.g. streamflow, sediment) and the uncertainty 
associated with hydrological predictions are therefore seen as major limitations for 
hydrological science nowadays (Sivapalan 2003; Wagener, Montanari 2011). In the 
absence of gauged data, hydrologists are forced to search for better tools to make 
predictions. This means there is a need for models which, on the one hand, are less 
demanding in calibration data but, on the other hand, better reproduce observed va-
riables (Wagener, Montanari 2011) and consequently are less uncertain (Sivapalan et 
al. 2003; Montanari 2011; Wagener, Montanari 2011).

2.1.2. Specificity of Small Urbanized Basin (SUB)

Small basins are typically defined as basins with a contributing area up to se-
veral dozens of square kilometres (Marshall, Bayliss 1994). This is usually up to 
50 km2 (Ciepielowski, Dąbkowski 2006). Such areas are drained by small local stre-
ams which further supply larger rivers. 

Due to a small contributing area, on the one hand, small basins react rapidly to 
rainfall events and the response time usually may be measured in hours (Marshall, 
Bayliss 1994). Therefore, it is assumed that snow melting and groundwater do not 
play a significant role in the generation of runoff after a rainfall event. For flood pre-
dictions, a basin response may thus be reduced to modelling only the direct surface 
runoff while omitting baseflow (Banasik et al. 2000). On the other hand, small basins 
are much more sensitive to local conditions such as land use changes resulting from 
basin urbanization (WMO 2008; Banasik 2011). In this, a sensitivity of a basin is 
inversely proportional to its area since small absolute changes lead to relatively large 
changes in the basin area. 

Small urbanized basins (SUB) are characterized as basins in which the ratio of 
urban sites has been significantly increased over time. This results from a transition 
from a natural or rural to an urbanized basin, and in small basins usually occurs rapi-

Rainfall-runoff modelling in small urbanized basins (SUB)14
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dly (Banasik et at. 2008). This ongoing process occurs until a basin becomes entirely 
urbanized; the ratio of urban sites equals 100%. Because usually the ratio of urban 
sites in SUBs is lower than 100%, it is difficult to separate stages prior to and after 
the urbanization. Typically, prior to the urbanization, a basin possesses a dominating 
ratio of permeable surfaces (for infiltrating water) such as farmlands or open spaces 
(e.g. parks, forests, gardens, unpaved roads) with only a little ratio of urban sites, 
which is typically less than 5% (Marshall, Bayliss 1994). As urbanization goes on, 
rural areas are consequently substituted by urban sites with impermeable surfaces 
(e.g. paved streets, parking lots, building roofs), what gradually increases the ratio 
of urban sites, see Fig. 2.2. for an example.

An increased amount of sealed surfaces reduces permeable surfaces for water 
infiltration and a possible basin retention and thus strongly modifies a basin hydrolo-
gy (Hall, Ellis 1985; Byczkowski 1999). Consequently, rainfall water will be quickly 
drained as a surface runoff. This results in a larger volume of discharged water and 
faster concentration time (see Fig. 2.2 right panel); time needed for a rainfall water 
to be discharged into a local stream (Ignar 1993; Christopherson 1997). This is espe-
cially visible after heavy rainfalls when the magnitude of discharged runoff increase 
can be up to few times higher in an urbanized basin in comparison to the state prior 
to the urbanization, Fig. 2.2 right panel. Thus, during flood conditions small streams 
can rapidly change into large rivers and may endanger neighbourhood areas (Fig. 
2.2 left bottom). Such very short and rapid floods are usually known as flash floods 
in order to highlight their specific nature (White, Howe 2004). In addition, rainfall 
floods may be accompanied by associated indirect flooding from combined sewage 
overflows (CSOs), which occur due to exceeding the drainage capacity (Hall, Ellis 
1985). 

Fig. 2.2. Runoff in a rural and an urbanized basin. Top left panel: transition from a rural (left) to an 
urbanized (right) basin by an example of Sluzew Creek, Poland; source: ursynow.org.pl. Bottom left 
panel: example of a small urbanized stream during ordinal flow (left) and high flow (right), Sluzew 
Creek. Right panel: comparison of runoff in a rural (brown line) and an urbanized (blue) basin in 

response to the same rainfall (blue histogram), Sluzew Creek; reproduced from Banasik, Ngoc 2010 

Rainfall driven flooding in SUB 15

monography.indd   15 2014-10-08   09:01:15



2.1.3. Difficulties of flood predictions in SUB

While large and economically important basins may have sufficient hydrologi-
cal gauges for the determination of streamflow, many small to medium-sized catch-
ments are often without any gauging station. In small basins if some observations 
are available, they are limited to a few years of the most basic hydrological variables 
such as rainfall and streamflow or water level. These data allow approximating only 
average yearly values. Often a possibility to continuously or even temporary model 
river flows is not given (Ciepielowski, Dąbkowski 2006). Unfortunately, in most 
cases, those regions of the world that suffer most from ungauged network are poor 
equipped in resources for flood hazard mitigation and adaptation and hence their 
vulnerability is high (Kapangaziwiri, Hughes 2008). 

Such scarce monitoring programs established for small streams is due to seve-
ral reasons. First, it is difficult to cover all small basins with monitoring even of basic 
hydrological variables due to a short and rapid basin response during rainfall events. 
Therefore, traditional observations with one record per day, which proves efficiency 
in bigger basins, are insufficient in small basins. Hence more frequent observations 
are required (Ciepielowski, Dąbkowski 2006) and those are expensive, especially 
when automatic equipment must be used. Second, a regular monitoring program can 
usually not be set-up in SUB because of a relatively very low flood hazard risk. This 
means that in case of flooding economical losses and casualties will be relatively 
small in comparison to larger rivers. Third, to provide a sufficient data set for optimal 
hydrological model calibration, long time series of observed input-output data are 
required and such require time to be gathered. 

For instance, in Poland from 4 656 rivers only 700 (15%) are gauged (Ciepie-
lowski, Dąbkowski 2006). The monitoring program covers 190 rivers with a water-
shed area above 500 km2 and only 1.8% from small rivers with the area less than 
50 km2, whereas 62% (2 919) of all rivers in Poland are defined as small. 

Despite the needs, increasing monitoring in reality is limited due to technical, 
economical and man power limitations and the amount of gauged basins frequently 
decreases (Kapangaziwiri, Hughes 2008). Therefore, SUBs remain mostly ungau-
ged or poorly gauged (Sivapalan 2003) or become considered as such speaking of 
current or future land use changes (Sikorska et al. 2012a). Specifically, the term of 
an ungauged basin refers to a particular basin which fulfills the following condition 
(EM 1994): »In the absence of data required for (statistical) parameter estimation 
for either existing or future conditions, the stream and contributing catchment are 
declared ungauged«. This means that, first, a basin which was gauged for particular 
conditions, e.g. prior to the urbanization, may become ungauged when referring to 
future changed conditions, e.g. after urbanization (see Sect. 2.1.2). Second, follo-
wing the international scientific community, International Association of Hydrolo-
gical Sciences Predictions in Ungauged Basins initiative (PUB initiative), the same 
basin may be ungauged when speaking of one variable, e.g. sediments, but at the 
same time gauged in regards to other variables, e.g. water level. The term ungauged 
refers also to a basin with inadequately observations to enable computation of hy-
drological variables of interest to the accuracy acceptable for practical applications 
(Sivapalan et al. 2003). 
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Lack of input-output observations to calibrate models makes hydrological pre-
dictions in SUB extremely difficult (Sect. 2.1.1). Consequently, making predictions 
without the possibility for a direct model calibration has become a common problem 
in hydrological practice (Sect. 2.2) and may lead to large uncertainty on the predic-
ted variables (Franks 2002; Sivapalan et al. 2003; Wagener, Gupta 2005), see Sect. 
2.3. SUBs are therefore especially interesting for hydrologists. This will not change 
in the nearest future as long as social (urban) and climate changes continue. The 
current emphasis of the PUB initiative is to put on improving methods that enable 
hydrologists to make predictions in basins with limited or no historical observations 
and on the reduction of the uncertainties associated with these predictions (Sivapalan 
et al. 2003; Kapangaziwiri, Hughes 2008).

2.2. Coping with predictions in SUB
2.2.1. Conceptual modelling

The general lack of recorded data in SUBs (see Sect. 2.1.3 and 2.2.4) usually 
prohibits the use of detailed physically-based models with many parameters that 
have to be inferred from calibration data. Hence conceptual models that require infe-
rence of only a few parameters are frequently used to predict the consequences of the 
future urbanization in SUBs (Sikorska, Banasik 2010; Bocchiola et al. 2011; Sikor-
ska et al. 2012a). Such models link model output and input through the relation with 
conceptual parameters having a direct interpretation. Hence parameters of concep-
tual models can be inferred independently from recorded data (Wagener, Montanari 
2011) based on catchment indencies via a parametrization process (Kapangaziwiri, 
Hughes 2008). Thus, conceptual models are important tools in understanding and 
predicting basin responses to measured or modelled climate and land-use scenarios 
(McMillan et al. 2010). However, due to a gross simplification of a complex basin 
system to the form of a conceptual model, they may provide uncertain predictions 
(Seibert, Beven 2009; Sikorska et al. 2012a).

2.2.2. Parametrization process and its limitation

Parametrization relies on estimating prior information on conceptual model pa-
rameters independently from input-output calibration data. Typically, it takes one of 
the three main approaches (Wagener, Montanari 2011): 
•	 Regionalization;
•	 Parameter elicitation;
•	 Parameter transformation from a donor basin. 

Apart from the latter, both methods (1) and (2) use commonly available or easi-
ly accessible basin attributes such as climate, topography, vegetation, soil properties, 
annual rainfall, areal potential evapotranspiration, basin area and geology (Chiew, 
Siriwardena 2005; Boughton, Chiew 2007).

In the regionalization, model parameters are estimated by one of two methods: 
i) statistical methods or ii) based on regional average values (Kapangaziwiri, Hu-
ghes 2008). In regards to i), bivariate or multivariate linear and non-linear regression 
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relationships are developed between optimized model parameters and some basin 
attributes for a number of gauged basins. These relationships are next transferred to 
the basin of interest (e.g. Seibert 1999; Merz, Blöschl 2004; Parajka et al. 2005; Wa-
gener, Wheater 2006; Oudin et al. 2008). In refer to ii), parameter values are mapped 
to average values for the region, based on the assumption that two or more basins 
that are located close to each other in real world would have a similar runoff regime. 
This is justified by smooth changes in climate and basin properties in a physical spa-
ce (Merz, Blöschl 2004). Parameters are next assigned based on a similarity in soils, 
rainfall, runoff ratios, etc. between basins. 

Model parameters can be also elicited only from local information on physical 
basin’s characteristics such as soil hydraulic properties, meteorology, geology, etc. 
(e.g., Atkinson et al. 2002; Kapangaziwiri, Hughes 2008). 

Finally, model parameter set may be transferred from a basin with similar cha-
racteristics (donor basin). A similarity between two basins is assessed based on some 
measure of hydrological similarity (indicies) e.g. yearly mean streamflow, yearly 
runoff, precipitation (e.g. McIntyre et al. 2005; Buytaert, Beven 2009; Wagener, 
Montanari 2011). 

All three described approaches allow inferring model parameters for basins 
with poor data coverage such as SUBs. Such delivered parameters are, however, sub-
ject to uncertainty which may lead to significant uncertainty on the predicted varia-
bles. This uncertainty has its sources in models structural errors, lack of parameter 
identifiability during the calibration if conducted, and a lack of reliable relationships 
between observable basin characteristics and model parameters (e.g. Wagener et al. 
2004; Wagener, Wheater 2006; Wagener, Montanari 2011). Moreover, the (1) method 
allows to transfer only single model parameter values without their mutual relation-
ships (Kapangaziwiri, Hughes 2008). Alternatively, the (3) method allows to include 
mutual dependencies between parameters. However, model parameters transferred 
from other basins will include also calibration errors from that basin (Franks 2002). 
This method additionally needs a careful selection of similar basins that are identified 
based on some selected group-defined signatures (Nathan, McMahon 1990). 

To reduce the uncertainty in predictions, it is still recommended to calibra-
te conceptual models at least with short-term recorded data (Wagener, Montanari 
2011). This allows to better identify model parameters and leads towards a reduction 
of uncertainty attached to model parameters and consequently to model predictions. 
As shown by Seibert and Beven (2009), short time series of streamflow observations 
can greatly help to infer accurate parameter estimates for a conceptual model applied 
to small and medium-size basins.

2.3. Uncertainty of hydrological predictions in SUB
2.3.1. Why uncertainty? Probabilistic vs. deterministic approach

In hydrological modeling (Sect. 2.1.1), there are two main approaches in use: 
deterministic and probabilistic. A deterministic model does not involve any random-
ness into the hydrological process. Therefore, a certain input under certain initial 
and boundary conditions will always produce the same model output. In contrast, 
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a probabilistic model (also stochastic) involves randomness into the hydrological 
process. Thus, despite constant initial or boundary conditions, the process may evo-
lve in several directions (Montanari et al. 2013), see also Fig. 2.3. 

Hydrological and meteorological events are commonly modelled as random 
events because it is difficult to define their magnitude, location, time and frequency 
of occurrence (Ciepielowski, Dąbkowski 2006). Based on their past observations 
it is possible, however, to deduce on principles of such events by defining the po-
ssibility of their occurrence. Unfortunately, due to their high variability, long term 
observations are usually required for their analysis. Representing model outcomes as 
random variables allows including prediction uncertainties into model results. 

2.3.2. Value of uncertainty analysis in hydrological modelling 

Because model outputs are uncertain (see Sect. 2.1.1) uncertainty analysis 
should be unavoidable in any (hydrological) modeling. Although this is currently 
emphasized in hydrological community (Sivapalan et al. 2003; Wagener et al. 2004; 
Efstratiadis, Koutsoyiannis 2010), it is still not a practice to link uncertainties to 
model predictions and to communicate them to decision makers. Consequently, de-
cisions are often made without the knowledge of their uncertainty or even a possi-
bility of being wrong. This leads to a false society perception of living safe; e.g. in 
floodplains or behind levees which are usually constructed for a flood with a 1% pro-

Fig. 2.3. Deterministic (left) vs. probabilistic (right) modelling. Notation: 
X – real forcing basin input; Xx – input into the model; y – model output; 

Y – real basin output (response); θ – model parameters; t – current time step; 
crossed circle – measurements location; based on Wagener et al. 2004.
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bability of occurrence. This means that on average a flood will occur once per 100 
years, so relatively rarely. Such a false confidence is illustrated by the example below. 

Didactical example 
Figure 2.4 presents the importance of uncertainty estimation in flood risk stu-

dies. A precise prediction determines here whether the inhabitants of a house are 
alarmed or not. Two possible predictions are to be considered. I – the house will be 
flooded – the inhabitants are alarmed; and II – the house will not be flooded – the 
inhabitants are not alarmed. These two predictions lead to four possible scenarios. 

Scenario IA – the house is flooded. Because the inhabitants were alarmed and 
possibly evacuated, the casualties and economic losses are greatly reduced. Scenario 
IB – the house is not flooded. The inhabitants were evacuated so the economic losses 
occur only due to the false alarm; no casualties are borne. Scenario IIA – the house 
is not flooded. The inhabitants were not evacuated so neither economic losses nor 
casualties are borne (Fig. 2.4 left). Scenario IIB – the house is flooded. The inhabi-
tants were not evacuated so both economic losses and casualties are expected to be 
high (Fig. 2.4 right). 

Fig. 2.4. Example of the significance of uncertainty estimation for the house located in floodplains; 
prediction (II) – the house will not be flooded; scenario A (left) – accurate prediction, 
the house is not flooded; scenario B (right) – wrong prediction, the house is flooded; 

source: http://gizmodo.pl/tag/powodz; http://wiadomosci.dziennik.pl 

The example above clearly proves the significance of the precise prediction 
and the knowledge of a possibility of being wrong. If instead of a single prediction 
II: the house will not be flooded, the uncertainty of this prediction would have been 
communicated i.e. The house may be flooded, the losses in scenario IIB could have 
been greatly reduced. Because if a possibility of being flooded was communicated, 
the prediction II would have leaded to the same actions as in the prediction I; i.e. 
inhabitant evacuation. 

Thus, communicating predictions with uncertainty protects from an apparent 
belief that derived single estimates are the only true solution and allows keeping 
alertness (Wagener et al. 2004). The uncertainty consideration can support decision 
making and usually three main reasons are given (Reichert 2012), namely:
•	 growing expectations from decision makers for a higher of accuracy and preci-

sion in hydrological predictions, 
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•	 growing interest in reducing the uncertainty in modelling and a better integra-
tion between a model and data, 

•	 increasing knowledge and understanding of hydrological processes within 
scientists’ community. 
Uncertainty analysis (UA) allows one to quantify this uncertainty in terms of 

feasible values that can be pracitally used in decision making process. When pro-
perly evaluated, UA provides with estimates which have a statistical interpretation. 
Providing outcomes with their probability may, however, increase the complexity in 
decision making because such outcomes should be implemented together with their 
probability estimates (Rossi et al. 2005).

2.3.3. Uncertainty definition 

Despite many hydrological studies on uncertainty, its unique definition is still 
missing (Wagener et al. 2004) and only a few attempts have been taken to define it. 
First, by contrast to the determinism, uncertainty may be described as any departu-
re from unachievable ideal of complete determinism (Walker et al. 2003). Second, 
Funtowicz and Ravetz (1990) described uncertainty as a situation of inadequate infor-
mation due to inexactness, unreliability, ignorance. Third, uncertainty may be consi-
dered, following Montanari (2007), as an additional attribute of information.

Given above, it should become clear that the uncertainty should not only be in-
terpreted as a lack of knowledge that arises from incomplete information or ignoran-
ce (Colyvan 2004). Conversely, more information and better knowledge on a certain 
issue can bring more uncertainty because it allows one to recognize that the analysed 
process is more complex than it was assumed before. This is illustrated in Fig. 2.5 
which presents different levels of uncertainty awareness, starting from an unachieva-
ble deterministic approach to an indeterministic approach and a total ignorance at the 
other side. Between both different levels of the ignorance and uncertainty exist and 
those include statistical uncertainty, scenario uncertainty and recognized ignorance.

Determinism represents an idealistic situation in which a system and its be-
haviour are intensively examined and the model perfectly imitates the system. It is 
worth noting that determinism defined in such a way is not equal to the deterministic 
approach in modelling, which assumes not that a system is extensively examined 
and therefore certain but that it can be conceptually described as deterministic, see 
Sect. 2.2.1. Opposite to the determinism, indeterminacy represents a situation when 
a mechanism and behaviour of a system are not known precisely (or not at all) and 
this unawareness (ignorance) cannot be reduced. Statistical uncertainty refers to any 

Fig. 2.5 The progressive transition between determinism and total ignorance; 
source: Walker et al. 2003
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uncertainty that can be described accordingly to statistics. Scenario uncertainty de-
scribes the uncertainty in environmental system due to unknown (usually future) 
conditions and their effects on the system and it cannot be captured by statistical 
variables. Recognized ignorance represents uncertainty about the mechanisms and 
functional relationships of the system. Finally, a total ignorance describes a situation 
when ignorance is not yet recognized due to the lack of modeller’s knowledge. This 
ignorance cannot be reduced unless it becomes aware or investigated (e.g. due to 
research) and thus will develop into recognize ignorance. 

In hydrological modeling, a notion ’uncertainty’ alone is, however, uninfor-
mative and should always be followed by an additional notation to what certain 
object it refers to, e.g. parameters uncertainty, uncertainty of predictions (flooding) 
(Montanari 2007). Mathematically, the uncertainty of an event (model output) can be 
expressed by a probability of this event occurrence (Box, Tiao 1992; Winkler 1996; 
Reichert 2011).

2.3.4. Uncertainty of hydrological model predictions (predictive uncertainty) 

A hydrological model cannot perfectly reproduce the process that it models 
(Sect. 2.1.1) and thus its output is uncertain. In hydrological community, this uncer-
tainty is called predictive uncertainty (elsewhere model outcome uncertainty or pre-
diction uncertainty). An occurrence of this uncertainty demonstrates a discrepancy 
between an observed output and predicted model output, which is called a prediction 
error. If an observed output is available, it may be compared with predictables in 
order to estimate this error, which allows one for estimating model credibility.

Conceptually, there is only one predictive uncertainty which refers to model 
output and sometimes is called total predictive uncertainty (elsewhere integral pre-
dictive uncertainty) (Winkler 1996). However, it is commonly agreed that the pre-
dictive uncertainty has different sources (Walker et al. 2003; Wagener et al. 2004). 
For hydrological studies, it can be important to locate sources of uncertainty and 
assess their contributions. This information may support modelling by pinpointing 
the weakest part in hydrological modelling. Thus, a distinction between uncertainty 
due to various contributing sources has practical aspects. To this end, the predictive 
uncertainty can be decomposed into various contributors (uncertainty sources) what 
can be, however, done only under certain assumptions. The most common assump-
tion relies on source additives.

2.3.5. Sources of the predictive uncertainty 

The predictive uncertainty sources in hydrological modelling are typically re-
presented by (Walker et al. 2003; Wagener et al. 2004): 
1.	 Model structure deficits (Ajami et al. 2007; Reichert, Mieleitner 2009; Renard 

et al. 2011; Honti et al. 2013) see Sect. 3.2.2, which arise with mapping the real 
system to a mathematical model structure. This, in particular, includes relation-
ships and functions between all model elements as inputs, outputs and varia-
bles, initial boundaries, functional forms, parameters, equations, assumptions 
and mathematical algorithms (Walker et al. 2003).
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2.	 Parameter uncertainties (Beven, Binley 1992; Ajami et al. 2007; Vrugt et al. 
2008a) see Sect. 3.2.3. In particular, the uncertainty in model parameters is 
related to the type of parameters. Namely, exact parameters such as universal 
constants (e.g. π = 3.141...) and fixed parameters, which have been extensively 
investigated previously (e.g. earth gravity) are assumed to be certain. All others 
should be considered as uncertain.

3.	 Input uncertainty (Kavetski et al. 2002, 2006a, b; Renard et al. 2010; Vrugt et 
al. 2008b; McMillan et al. 2011), see Sect. 3.2.4, that is associated with input 
variable that forces model behaviour (external driving force). Additional errors 
may also occur during measuring process of input data or data pre-processing.

4.	 Output uncertainty or uncertainty in calibration data which occurs due to un-
certainty in output data for model calibration and is mostly caused by observa-
tional errors (measurement) (Schmidt 2002; Di Baldassarre, Montanari 2009; 
McMillan et al. 2010).
Traditionally in hydrological modelling, priority has been given to model struc-

ture errors and model parameter uncertainty (Vrugt et al. 2008a). Other sources have 
been usually assumed not to be of the considerable importance due to small influence 
on the model’s output (input uncertainty) or a common belief in a high accuracy of 
calibration data (output uncertainty). However, even if not all of those sources have to 
be significant in every model and every basin, all should be properly acknowledged. 

Unfortunately, while making predictions in SUB, it is not always possible to 
distinguish between diverse uncertainty sources because of a noticeable dependency 
between all of them, especially between a model structure and inferred parameter 
uncertainties (Walker et al. 2003).

2.3.6. Predictive uncertainty nature 

The acknowledged predictive uncertainty is subjected to epistemic and aleatoric 
uncertainty and thus may be reducible or not (Aronica et al. 2013). The predicti-
ve uncertainty may be reduced (epistemic uncertainty) if it occurs due to imperfect 
knowledge on the system, limited or inaccurate data, measurements error, limited un-
derstanding of the system, imperfect models, subjective judgment. Alternatively, the 
predictive uncertainty cannot be reduced (aleatoric uncertainty else variability uncer-
tainty) if it is emerging from the variability of the complex system being described. 
Hence it is caused by variation in external input data, input functions, parameters and 
model structure due to randomness in an environment itself, incoherence in human 
behaviour, social, cultural and economic dynamics and technological variability. 

It must be stressed here that the predictive uncertainty usually comprises both 
types i.e. epistemic and aleatoric uncertainties. Thus, usually only a part of it (epi-
stemic uncertainty) may be reduced while some uncertainty (aleatoric uncertainty) 
always remains. In this, identification of the predictive uncertainty nature (reducible or 
irreducible) is crucial when assessing whether more research (empirical efforts) would 
bring more information and significantly reduce the current uncertainty or rather other 
model approaches should be chosen (Winkler 1996). The uncertainty analysis allows 
locating significant uncertainty sources and in this way supports making decisions.
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3. METHODS – BAYESIAN UNCERTAINTY ANALYSIS IN SUB
3.1. Preface to methods chapter

3.1.1. Stochastic description of the rainfall-runoff process

A rainfall-runoff (RR) process within a basin may be characterized by the real 
precipitation, evaporation, etc. that induces the real basin response known as real 
runoff (streamflow, water level or sediment concentration), see Fig. 3.1. In a similar 
fashion, an RR model imitates the real system by transforming an input variable (e.g. 
rainfall) into an output variable (e.g. runoff). Unfortunately, due to measurement and 
perception errors (Sect. 2.4.4 and 3.2) real variables are very difficult to measure 
in practice and instead observed variables are measured. This is represented by the 
equation of observed output and input:

	 Yo = Y + ey and Xo = X + ex	 (3.1)

Where, Yo, Y, ey are observed and real output and observational error, Xo, X and 
ex are observed and real input and its error.

Also, modelled output usually differs from the observed output due to structural 
limitations of the model (Sect. 3.2). A calibration of a model allows reducing errors 
of a mismatch in predictions but some errors usually remain due to many unknowns 
involved in hydrological modelling (Reichert, Schuwirth 2012). Additional errors 
may occur when transferring observed forcing variable (e.g. punctual precipitation) 
into input required by model (e.g. areal precipitation). This is represented on Fig. 3.1.

Note that errors integrate along arrows so that the modelled outcome y (on Fig. 
3.1.) based on the observed input variable (Xo) contains errors due to: i) measurement 
and transformation errors of the observed input variable (X → Xo → Xx), ii) structural 
errors of the model (Xx → y) iii) errors of model parameters (θ) and iv) measurement 
errors of the observed modelled output (Y → Yo) if the model is calibrated. All those er-
rors contribute to the predictive uncertainty of the variable predicted by a RR model 
(e.g. y). However, the importance of diverse errors may be different and thus errors 
may contribute unequally to the predictive uncertainty. 

3.1.2. Formulation of the stochastic rainfall-runoff model 

A deterministic hydrological model M that transforms input data (X ) into mo-
delled output y can be represented by a function of model parameters θM and X (Ka-
vetski et al. 2006a, b) as: y =  M (X, θM), see Eq. 2.1. A bold font indicates a vector. 
A model M aims at imitating the real system variable Y. When this imitation is im-
perfect (Sect. 3.2.2), additional errors arise due to i) measurement noise of the sys-
tem variable represented by ε and ii) errors in input and structural limitations of the 
hydrological model. These last two error sources produce what is named model bias 
represented by B. A statistical description of the bias is not a trivial task and requires 
undertaking research of its own (Del Giudice et al. 2013). Recently, the inclusion of 
these errors into predictions has been proposed, by combining a deterministic model 
M with both error terms (Reichert, Schuwirth 2012): 
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 	 Y = y (X, θM) + B (X, θB) + ɛ (θɛ)	 (3.2)

Where Y is the predicted stochastic output of M when accounting for errors. 
θε and θB represent parameters of the measurement error and of the bias, respectively. 
B(X, θB) represents a stochastic process and cannot be known in advance. ε could be 
only estimated if the Y is known. Thus, if only insufficient information on both errors 
is available, it is a common practise to model B(X, θB) + ε(θε) as a single error term E: 

 	 Y = y (X, θM) + E (θE)	 (3.3)

Where θE = {θB; θε} and θM represents a vector with all model parameters: θM = 
{θM1 ,θM2,...,θMn}.

3.2. Sources of predictive uncertainty

The predictive uncertainty (PU) of model predictions is modelled as an accu-
mulated uncertainty of four mentioned uncertainty sources (see Fig. 3.2 and Sect. 
2.3.4). These sources are subject to uncertainty of diverse origin.

3.2.1. Uncertainty of model structure 

Uncertainty in a model structure is unavoidable in hydrological modelling whe-
never an imperfect model is constructed (Wagener, Montanari 2011). In general, this 
structural uncertainty may be caused by (Reichert 2011): 

Fig. 3.1. Schema of possible uncertainty sources in hydrological modelling. Dashed lines pinpoint 
location of possible errors. Random quantities are shown in ellipsoids, deterministic in squares. 

Notation: X, Y represent a forcing variable and model response that occurred in the reality; Xo and Yo 
represent observed variables respectively; Xx is transformed observed input variable into the model; 

y is modelled output; bold font indicates vectors. 
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•• inadequate selection of model variables and processes, 
•• inadequate selection of process formulations,
•• inadequate choice of the spatial and temporal resolution of the model. 

Consequently, a model, due to its structural limitations, will reproduce an observed 
variable with an prediction error (Gupta et al. 1998). Unfortunately, a formal description 
of this error is difficult. Indeed, it is extremely difficult to describe model errors in the 
form of relations; otherwise, the model structure could have been improved, e.g. by in-
cluding a correcting factor (Reichert, Schuwirth 2012). To reduce errors in predictions, 
a model is usually calibrated against observed data. This allows adjusting model para-
meters so that the predicted variable can better reproduce the observed variable. 

A calibration of the model, however, has two difficulties. First, if the model 
structure remains untouched, the model calibrated to some observed data will most 
likely not be able to predict outcomes for new data sets with the same accuracy. Se-
cond, some models, even after calibration, cannot reproduce data in a satisfying way 
(Sect. 2.1.1). This is mainly caused by: i) too far going simplifications of a model 
structure, ii) input uncertainty in the forcing variable and/or iii) a poor data set which 
does not contain enough information to infer all model parameters which results in 
model overparametrization. This problem may be of a particular concern for SUBs 
that are usually poorly gauged (Sect. 2.1.3) and for which typically simple concep-
tual models must be applied (Sikorska et al. 2012a).

3.2.2. Uncertainty in model parameters 

Parameters of hydrological models are usually estimated from observed output 
data or physical properties of a basin and typically consist of a basin area, a runoff 
coefficient, an impervious area and other basin characteristics. Traditionally, para-
meter values or ranges have to be chosen prior to the calibration. Such an arbitrary 
choice of parameters is subject to the uncertainty. As stated in Sect. 2.3.4, only exact 
and fixed parameters may be assumed as constant i.e. without any uncertainty. All 
others should be considered as uncertain. 

Parameter uncertainty is strongly related to the model structure uncertainty 
(Sect. 3.2.2). In the case of no bias being apparent in the model, parameter uncerta-
inty would tend to zero as the quantity of calibration data approaches infinity. 

Typically, the parameter uncertainty is of the highest concern in a hydrological 
community. This is due to a common (mistaken) belief that model parameters are the 
most unsure component in modelling since they need calibration to predict a variable 
in a satisfying way (Sect. 2.1.1). Conceptually, model parameters are also the easiest 
component of uncertainty to account for because of their explicit description.

3.2.3. Model’s input uncertainty 

Input uncertainty describes the uncertainty in the observed variable that drives 
the model (see Sect. 2.3.4). Traditionally in hydrological modelling, input uncerta-
inty was assumed to be insignificant relatively to other sources and therefore has 
been frequently disregarded by hydrologists. However, it has been recognized that 
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a model input as a forcing variable has a crucial influence on model predictions and 
consequently on model accuracy (Kavetski et al. 2002; Kuczera et al. 2006).

The input into rainfall-runoff (RR) models usually consists of observed precipi-
tation and sometimes evaporation. The uncertainty of evaporation data arises mostly 
from the measurement errors and may be considered as 2-5% of measured values 
(WMO 2008). In SUBs, due to smooth and slow changes in evaporation over the 
spatial area and a small contributing area, the evaporation over the entire basin area 
can be assumed to be constant. The error due to the spatial variability in evaporation 
is thus less significant.

In contrast to this, precipitation is characterized by a significant spatial and 
temporal variability of rainfall fields over the basin area (Fig. 3.2). Ideally, input 
precipitation into RR models should represent this variation. An areal measure of 
precipitation can be achieved e.g. with radar data. However, their high costs and 
poor spatial resolution (few kilometers) usually limit practical applications in SUBs. 
Instead, precipitation within a basin is traditionally measured with point rain gauges 
unevenly spread over an area of interest. The advantage is a relatively low cost of 
maintenance and data-gathering. Unfortunately, such irregular rain gauge networks 
cannot capture rainfall field variability and are thus limited to measure only a punc-
tual rainfall occurrence (Kavetski et al. 2002, 2006; Bárdossy, Das 2008; Moulin et 
al. 2009; McMillan et al. 2011). Because the RR model requires areal precipitation 
as an input, measured punctual rainfall must be averaged over the basin area. 

Given the aforementioned considerations, even if errors in precipitation measu-
res alone can be assumed to be small and represent only 3-7% of measured values 
[WMO 2008], the uncertainty in input rainfall to RR models must still be considered. 
In particular, this may be due to, (McMillan et al. 2011): 
•	 Usually poor representation of rainfall fields over the entire basin by a (small) 

set of punctual gauges which is the case for most of the SUBs. It is also not 
uncommon for a single gauge to be located close enough to be used. 

Fig. 3.2. Spatial variation of a rainfall field over a city, source: http://forum.xcitefun.net
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•	 Interpolation of rainfalls between measures observed on rain gauges, which is 
mandatory due to a sparse rainfall gauge network. Although this may not play 
a significant role in small rural basins, SUBs are particularly subjected to 
such errors as a result of i) local rainfalls of which coverage is limited only to 
some districts within the city and ii) cities’ influences on clouds (warmness, 
wind, etc.). 

•	 Measurement error in commonly used tipping bucket rain gauges. This includes 
both systematic and random errors, as well as those due to local influencing fac-
tors (mechanical limitations) such as wind effects, evaporation losses, influence 
of neighbourhood (trees, buildings, etc.).
Consequently, input precipitation into RR models extracted from point rain 

gauges is expected to be highly uncertain.

3.2.4. Uncertainty in calibration data 

Measurement uncertainty of the modelled quantity is called uncertainty in ca-
libration data or output uncertainty. The accuracy in calibration data determines the 
reliability of hydrological predictions and is therefore of particular importance (Do-
meneghetti et al. 2012). The uncertainty in calibration data occurs due to the fact that 
the real value of a variable can never be precisely captured during measurements 
(Walker et al. 2003), see also Fig. 3.2. Therefore, measured data are subject to errors 
which may stem from: 
•	 sampling,
•	 inaccuracy/imprecision in measurements,
•	 transformation errors when mapping directly measured variables into desired 

variables (e.g. water levels to streamflow by a rating curve).
Uncertainty in calibration data and especially its influence on predictive uncer-

tainty is rarely assessed quantitatively by hydrologists, for two main reasons (Sikor-
ska et al. 2013). Firstly, it is difficult to make any statement on output uncertainty 
if data are transformed from other quantities. Secondly, modellers often work only 
with the derived quantities and not with the raw data. 

Given these facts, it is a common practice to assume that this uncertainty is 
much smaller than that from model parameters, model structure or input, and is thus 
assumed to be negligibly small (Di Baldassarre, Montanari 2009; Di Baldassarre, 
Claps 2011; Sikorska et al. 2013). This can be true when special efforts are put into 
maintenance procedures and better equipment which allow for a significant reduc-
tion of the output uncertainty. In all other situations, however, this uncertainty should 
be considered cautiously. This is especially so as some uncertainty always remains 
despite sufficient maintenance (see Sect. 2.3.4). 

Calibration data typically refer to streamflows for rainfall-runoff (RR). Hence, 
the uncertainty of this variable is further discussed.

3.2.5. Uncertainty of streamflow data 

The uncertainty of streamflow data is strongly dictated by the measurement 
method. If streamflow measurements are of a high quality, e.g. gather in good con-
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ditions, their measurement errors are assumed to be rather small (5%) (WMO 2008). 
Such small errors can be achieved when streamflows are gathered by current meters 
with the commonly used area-velocity method (Le Coz 2012). This method links 
streamflow to a cross sectional area and an average velocity which can be measu-
red with the average error of 2-5% (Di Baldassarre, Montanari 2009; WMO 2008). 
Although very convenient, this method becomes impracticable in field conditions 
when continuous or frequent data are required due to time consuming measurements 
required to obtain a single stream-flow record. 

RR models require, however, continuous streamflow data for their calibration. 
Thus, streamflows are usually computed from easier to continuously measured water 
levels with the use of a hydraulic model which relates streamflows to water levels, 
a water level-runoff (LR) model (Sikorska et al. 2013). A LR is usually represented 
by a rating curve (RC) which consists of an empirical relationship and therefore must 
be calibrated for a certain cross section on data obtained from hydrometric measu-
rements (Le Coz 2012) Alternatively to an RC, a numerical hydraulic model can be 
constructed. This is, however, less practical because more data are required, e.g. de-
tailed data on the river channel properties which are more often than not unavailable 
for SUBs (Sikorska et al. 2013). A measurement error of water levels can be assumed 
to be small, in the range of 1-2 cm (WMO 2008). 

Unfortunately, using RCs to infer streamflow records is not free from error (Di 
Baldassarre et al. 2012; Sikorska et al. 2013), which is mostly caused by: 
•	 Uncertainty in measured data used to calibrate an RC (punctual records of 

streamflow-water level relations); 
•	 Structural and physical limitations of the RC method due to assumptions of ste-

ady flow conditions, neglecting hysteresis effect, or simplifying a cross section 
structure to a manageable shape;

•	 Uncertainty in method’s parameters due to temporal and seasonal changes of 
hydrological conditions within a certain cross section; as seasonal variation of 
vegetation, temporal movements of a stream bed, variation of a cross section 
shape, etc.;

•	 Extrapolation of an RC beyond the measured (or recommended) range.
It has been shown that the latter errors dominate among all other sources of 

uncertainty in RCs (Domeneghetti et al. 2012). Unfortunately, calibration data for 
RC are often limited only to normal conditions when the interest lies in flood flows 
(Pappenberger et al. 2006). Thus, in flooding studies, it is usually a necessity to 
extrapolate an RC in order to obtain streamflows for RR model calibration. 

All these factors contribute to overall RC uncertainty which may be even up 
to 25% in the extrapolation range (Kuczera 1996; Di Baldassarre, Montanari 2009; 
Di Baldassarre et al. 2012). This quantitative contribution is, however, not generali-
zable since it is strongly related to a case study, available data and individual cross 
section characteristics. For instance, a bed movement and seasonal changes will not 
be observed in SUBs with an artificial channel. Interestingly, it is an often neglected 
fact that the uncertainty in the RC propagates through the RC method and is further 
linked to streamflow records computed with the RC. This uncertainty will consequ-
ently influence RR model predictions.
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3.3. Introduction to the Bayesian inference

The uncertainty of predictions as represented in the Sect. 3.2 are only meaning-
ful if they have a clearly defined interpretation. Unfortunately, many uncertainty 
approaches that are commonly in use do not provide uncertainties that can be sta-
tistically interpreted. Among others, the most popular approach in hydrology is the 
generalized likelihood uncertainty estimation or shortly GLUE (Beven, Binley 1992; 
Romanowicz, Beven 2003; Montanari 2007). This technique relies on a subjective 
likelihood measure which weighs the probabilities associated with different parame-
ter sets in order to derive the posterior distribution of output variable. Thus, every 
possible model outcome arrived from the defined parameter space is weighed with 
this likelihood measure (Romanowicz, Beven 2006). The key feature of GLUE is 
that the likelihood measure is specified as an objective function. Thus, the estimated 
uncertainty depends largely on the subjectively specified likelihood measure (objec-
tive function) (McIntyre et al. 2002). This likelihood measure should not be interpre-
ted as a statistical likelihood estimator unless it is explicitly specified as such (e.g. 
Romanowicz et al. 1994). The form of GLUE with statistically described likelihood 
is refereed sometimes as a formal GLUE (Romanowicz, Beven 2006).

The principle of GLUE lies in mapping all uncertainty in prediction entirely 
to the parameter uncertainty and in propagating this uncertainty through the model 
structure in order to estimate uncertainty of a modelled output. Because conceptually 
it is easy to compute, GLUE is a common choice to estimate uncertainty in hydro-
logical studies. The main drawback of the classical GLUE, i.e. without statistically 
described likelihood, is the assumption on model correctness. As a result of this, 
model parameters compensate for the model error. If the model does not reprodu-
ce perfectly observed data, this assumption will lead to the increase in parameter 
uncertainty. However, if many data points are available, the parameter uncertainty 
becomes low and the associated uncertainties usually are underestimated. Also, mo-
del parameters mapped with error of diverse sources become hardly interpretable. 
Finally, derived uncertainty of predictions does not have necessarily a probabilistic 
interpretation and may not reflect the real situation. Thus, such estimated uncertainty 
becomes unhelpful for further studies and applications, and concern a question of 
their implementation into decision making processes. 

In contrast to that, a formal Bayesian approach is based on a subjective interpre-
tation of probabilities and is fully consistent with probability calculus. The principle 
of the Bayesian approach lies in the Bayes’ theorem. 

3.3.1. Bayes’ theorem and Bayesian probability 

The Bayes’ theorem, first introduced by Thomas Bayes (1702-1761) and further 
developed to the nowadays form by Pierre-Simon Laplace (1749-1827), uses the 
evidence that an event has occurred in the past to calculate the probability that it will 
occur in the future. Following probability theory, it is expressed as the conditional 
probability of an event given the probability of another event which has already 
occurred (Box, Tiao 1992; Gillies 2000). An example of conditional probability ap-
plication in hydrology is given below.
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Didactical example
Consider a following situation, taken from Reddy (1997), a study of daily ra-

infalls at a certain rain gauge station has revealed that in July the probability of 
a rainy day following a rainy day at this certain rain gauge is 0.5. If it is observed 
that a certain day in July is a rainy day, what is the probability that the next two days 
will also be rainy?

Following some initial rainy day A0, let A1 be the first rainy day. A2 will describe 
the second rainy day. The probability of A1 being the rainy day is, from the given 
information, equal to 0.5 because A0 has already occurred. Then the probability that 
the second day A2 is also a rainy day given that the first day A1 is a rainy day is now 
sought for. This is P(A2|A1):  	

P(A2|A1) describes now the probability that the following day is a rainy day if 
the day before is a rainy day. From the given information, this probability also equ-
als 0.5. Thus, the probability that both A1 and A2 are rainy days will be described by 
P(A1∩A2): 

 If A1 and A2 were independent events, they occurred independently from each 
other, the occurrence of A2 was not affected by the occurrence of A1.

Thus P(A2|A1) =  P(A2). In the example above this could be considered if A1 and A2 
are not sequential days.

Bayesian probability
A probability in the Bayesian framework is interpreted as a degree of belief 

and consequently probabilities are to some degree subjective. This subjectiveness 
is expressed by a combination of one’s belief and the evidence i.e. proved by data 
[Gillies 2000]. Hence the Bayes’ theorem links the degree of a belief in a proposition 
before and after accounting for the evidence. The application of the Bayes’ theorem 
to update beliefs is called Bayesian inference. 

Since the Bayes’s theorem considers a subjective interpretation, the resulting 
probability will alter depending on the state of a belief (subjective) and access to 
the evidence (data) and may lead do different results when evaluating by different 
persons (see the example below). 

Didactical example
Consider a following coin-tossing experiment, taken from Sivia [1996]; one is 

tossing a coin n times. By fair, one would expect to observe heads (or tails) in 50% 
of all n flips assuming that the coin-tosser does not control the initial conditions of 
the flip e.g. angular conditions. To express the belief of a fair coin, let denote the 
bias-weighting by H. Thus, H = 1 and H = 0 can represent a coin which produces 
always a head, a double-headed coin, and a tail, a double-tailed coin, respectively. 

P(A2|A1) =
P(A1∩A2)

P(A1)
or  P(A1∩A2) = P(A1) P(A2|A1) (3.4)

P(A1∩A2) = P(A1) P(A2|A1) = 0.5 × 0.5 = 0.25 (3.5)
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H = 0.5 would represent a fair coin, headed-tailed. A person’s belief will represent 
now the state of knowledge about the coin fairness; how one believes these different 
states of H to be true. This belief will alter in the light of data when the number of 
executed tosses n is increasing. This inference about the coin fairness is summari-
zed by the conditional probability: prob(H|{data}, I). I represents the conditioning 
information as initial information of the coin or the experiment; e.g. that the tosses 
are independent. 

As shown by the example, if only a few data are available, the prior strongly 
influences the current belief about the coin fairness. This effect vanishes with more 
data becoming available. The same effect can be observed in regard to the choice of 
the alternative prior distributions. Different priors have a strong effect on the cur-
rent belief if only a few data are examined. If numerous data are available, different 
priors should lead to the same updated belief. 

The Bayesian subjective interpretation of the probability is in contrast to the 
classical (relative-frequency) approach, where probabilities describe limited relative 
frequencies and therefore are assumed as being objective. Thus, many scientists and 
statisticians feel uncomfortable with the subjective Bayesian approach (Lele, Allen 
2006). In real applications, however, a real objectiveness is almost never obtainable 
due to many (subjective) assumptions which have to be made (Winkler 1996; Gel-
man et al. 2003). Consequently, the objective probability would remain only idealo-
gical (but never reached) and the subjective interpretation of a probability would turn 
into realistic.

3.3.2. Bayesian approach principle 

Bayesian concept 
One of the strengths of the Bayesian approach is its ease to derive the predic-

tive distribution. Accordingly to the Bayes’ theorem, the knowledge about model 
parameters θM is represented as a random variable. The probabilistic assumption 
on θM is expressed by a distribution that describes a subjective belief about their 
values p(θM) which is called as prior distribution or prior. The ’prior’ stresses here 
that a belief is constructed before considering any evidence of data. The information 
contained in (calibration) data (YC) may, however, alter the current belief leading to 
stating the new updated belief called as posterior or posterior distribution, p(θM|YC). 
In the same fashion, any environmental system or model can be also represented by 
a probability distribution based on the belief of its behaviour. This system behaviour 
can be further described by the conditional belief about system observations given 
the parameter values called as likelihood function p(YC|θM).

Framing belief on model parameters
To be applied, Bayesian statistics requires a quantitative formulation of the cur-

rent knowledge. This can be done conceptually by relative frequencies within the pro-
bability theory (Reichert 2012). Relative frequencies are expressed as a proportion of 
all given values in an interval and therefore allow including different degrees of belief. 

The prior remains constant under constant circumstances but strongly depends 
on the familiarity and possessed knowledge of the person which constructs its own 
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belief about the system and therefore may be incomplete. To minimize such sub-
jectiveness, the prior represents usually beliefs of a scientists group from the filed 
of the interest, experts, instead of a single person’s belief. Thus, it reflects a current 
state of the scientific community knowledge on a certain issue. Experts are here di-
stinguished from scientists who conduct and manage the entire uncertainty analysis 
process (e.g. model predictions). Instead, experts are not necessary directly involved 
in the uncertainty analysis but their knowledge may be used on different steps of this 
analysis as for instance to elicit the prior. Using experts’ knowledge leads to results 
that become representative in term of the current state of scientific knowledge.

Unfortunately, eliciting a prior distribution may be difficult in hydrology becau-
se for many scientists or experts it is challenging to express precisely their knowledge 
in a probability fashion (Garthwaite et al. 2005). Most of all, because it is difficult to 
visualize parameters of a deterministic hydrological model as continuous probability 
distributions. Also, eliciting a full distribution with which an expert is totally comfor-
table may pose problems for many experts (West 1988). Instead frequencies pose less 
problems (Lele, Allen 2006) and therefore in many cases the prior is first inferred as 
frequencies and after that transformed to probabilities (Sikorska et al. 2012b).

Learning from the data – Bayesian updating
The principle of the Bayesian inference is to use data to update prior infor-

mation on model parameters (Eq. 3.6). The Bayesian updating may be therefore 
interpreted as a learning process. That is, a transformation from the established prior 
p(θM) to the posterior p(θM|YC). Formally, it reflects what have been learned about the 
assumed a’priori model parameters p(θM) from a consideration of the calibration data 
YC (Gelman et al. 2003): 

The goodness of the learning process depends on assumptions about model 
errors. Typically, a posterior becomes narrower during the learning process. A poste-
rior may become wider if there is an evidence for that in calibration data.

3.3.3. Advantages and disadvantages of Bayesian approach 

Bayesian statistics has been shown to be conceptually more satisfying than 
other approaches of uncertainty analysis in hydrological studies (Mantovan, Todini 
2006; Vrugt et al. 2008a; Yang et al. 2008; Sikorska et al. 2012a). This is namely due 
to following (Gelfand, Smith 1990): 
•	 It provides a natural and constant principled way of combining prior informa-

tion with data. The current knowledge about the model is summarized by the 
prior distribution that is used for future analysis. This prior can be formulated 
i) based on previous studies or short data series and/or local information, ii) 
elicited from the experts’ knowledge without any field data. It may be next 
incorporated with available observations (data) leading to the updated know-
ledge – posterior. If new data become available, the previous posterior becomes 

p(θM|YC) =
p(θM) p (YC|θM)

p(YC) (3.6)

Introduction to the Bayesian inference 33

monography.indd   33 2014-10-08   09:01:18



the prior for the next evaluation and may be updated to the new posterior. All 
inferences logically follow the Bayes’ theorem (see Sect. 3.3.1). 

•	 It provides inferences that are conditional on the data and inferred probability 
distributions that are exact. 

•	 It provides interpretable probability distributions with a real probabilistic in-
terpretation because all analysis follows the basic probability axioms. Thus, 
derived uncertainty bands represent truly probabilities and derived parameter 
distributions reflect the real parameter densities. 

•	 Derived posterior distributions have to lie within the support of the prior (Eq. 
3.5). This may be particularly useful for inferring nonnegative parameters by 
setting the probability of negative values to zero. 

•	 Bayesian statistics requires an explicit formulation of the error process. This 
error has an interpretation because of transparent assumptions. 

•	 It gives the possibility to separate the sources of uncertainty and following that, 
by assessing their relevance, it allows one to pinpoint where additional steps 
should be taken to reduce the uncertainty and to improve model predictions 
(when possible). 

•	 It allows for models comparison and thus for a model selection (not considered 
in this thesis). 

•	 It allows assessing benefits of the investigation ahead of it; for instance if a new 
field experiment can be used to limit the uncertainties in predictions or rather 
another model should be applied. 

•	 It does not necessary require observed output data to provide with probabilistic 
predictions since current prior information already allows to make predictions wi-
thout the need for prior updating. Therefore, if a model, prior and a likelihood have 
been established, the prior parameter distribution can be sampled and correspon-
ding ensemble of predictions can be already given (Wagener, Montanari 2011).
Because of the reasons given above, the Bayesian approach can be also applied in 

basins without long term observations as in SUBs or in generally poorly gauged basins. 
For examples of its application see e.g. Beck and Katafygiotis (1998), Sivia and Skilling 
(2006), Wagener and Montanari (2011), Zhang et al. (2011) or Sikorska et al. (2012a).

Despite many advantages, Bayesian analysis presents some limitations (Gel-
fand, Smith 1990): 
•	 It requires a formulation of the likelihood which may be difficult to formulate. 
•	 There is no unique approved way to elicit a prior. Thus, formulating current 

knowledge in term of probability may be problematic (Scholten et al. 2013). 
•	 Computations may become problematic and costly in time if hydrological mo-

del is slow in evaluations because many model runs must be performed to find 
the posterior. 

•	 Numerical problems may occur when sampling from posterior distributions 
for obtaining simulations because each time slightly different realizations are 
obtained. As a result of the Bayesian inference probability distributions are de-
rived which are exact. To approximate the predictive distributions of modelled 
output, model parameters usually must be sampled from these distributions. 
These random parameter samples are next used to compute corresponding mo-
del realisations. 
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3.4. Bayesian inference
3.4.1. Bayesian learning − calibration of a model

Model predictions 
A model response is represented by a probability density function pdf. Predic-

tions of the model M are then formulated as a predictive distribution p(Y) that is calcu-
lated by marginalizing the joint distribution of the parameters and Y (Congdon 2003). 

 Where p(Y|θM) is the likelihood function which is proportional to the probabi-
lity that the observations could have been derived by the parameter set θM

i (Congdon 
2003). Thus, the likelihood assesses the probability of observing data arising from 
the assumed hypothesis which is represented by candidate model parameters θM

i.

Bayesian learning 
A prior belief on model parameters p(θM) is formulated without accounting for 

any evidence in calibration data. This evidence in a hydrological model M is repre-
sented by the observed data (output) YC: 

 The principle of Bayesian learning from data YC (also Bayesian inference), 
described in Sect. 3.3.2, is to improve current beliefs (knowledge) represented by 
p(θM) to the new (updated) current beliefs which now become posterior beliefs 
or in terms of probability – posterior distribution of parameters. This posterior is 
a combination of the prior knowledge and the data and the likelihood function. 
This posterior is represented as a conditional probability of obtaining θM given the 
data YC so as p(θM|YC). According to the Eqs. 3.6 and 3.7, the belief on θM becomes 
(Congdon 2003): 

 Because ∫ p(YC|θM) p (θM)dθM is difficult to evaluate, usually the proportional 
relationship is sufficient for the probability approximation:

 Accordingly to the Bayes’ theorem (Eq. 3.6), the posterior distribution of the model 
predictions in Eq. 3.7 will become now, after having observed data (Gelman et al. 1996): 

 Where p(θM|YC) is a posterior distribution of parameters. 

p(Y) = ∫ p(Y|θM)p(θM)dθM (3.7)

Y C = {Y 1, Y 2,..., Y n} (3.8)

(3.9)p (θM|YC) =
p (θM) p (YC|θM)

p(YC) =
p (θM) p (YC|θM)

∫ p (YC|θM) p (θM)dθM

p(θM|YC) ∞ p(θM) p (YC|θM) (3.10)
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 3.4.2. Posterior analysis 

Marginal distributions 
Comparing the estimated posterior distribution of model parameters p(θM|YC) 

with the prior p(θM) gives an estimate of what have been learnt form the calibration 
data (YC) (see Sect. 3.3.1). The prior is usually expressed as standard pdf for which 
characteristic values such as a mean or a standard deviation can be derived and the-
refore the prior may be described in terms of mathematical equations. The posterior, 
however, usually does not result in a standard distribution and thus cannot be captu-
red in the form of simple mathematical equations. Therefore, a comparison of prior 
and posterior can be practically assessed by graphical analysis while both pdfs are 
plotted together (Reichert 2011), see the example in Fig. 3.3.

The analysis of pdfs aims at assessing the gain of the information contained 
in data. This is usually assessed by two factors: a pdf width reduction and a shift of 
posterior towards prior pdf. Generally, if the posterior becomes narrower than the 
prior, the learning process was successful. Opposite, the posterior wider than the 
prior indicates that the prior was too confident (too narrow) for the information con-
tained in the data given the model. The posterior similar to the prior states that there 
was no gain of information from the data content. This may lead to the identifiability 
problem (Sect. 2.1.1). A significant shift of the posterior marginal towards the prior 
states about the relevance of the learning process. 

Parameters correlations 
The posterior contains information on mutual correlations between model pa-

rameters θM. This means that, even if for the prior independence between all para-
meters is assumed, the posterior will contain dependencies between the parameters. 
The correlation between parameters can be assessed graphically by plotting posterior 
samples for all parameters against each other as a scatter plot.

Fig. 3.3. Example of prior (dark solid line) and posterior (gray polygon) PDF for basin area (Ac)
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 3.4.3. Measure of predictive uncertainty 

Residuals analysis 
Model residuals, prediction errors, represent the difference between a predic-

ted and an observed variable. The analysis of model residuals allows one to assess 
in how far the statistical assumptions underlying the introduced error model are 
fulfilled. This analysis should absolutely precede the analysis of derived predictive 
distributions, because only if the statistical assumptions are fulfilled, the derived 
uncertainty may be considered as meaningful.

It is sensible to evaluate the residuals at the maximum of the posterior, i.e. 
mode: p(Ỹ ) (e.g. Reichert 2011). p(Ỹ ) is the most likely model prediction which can 
be interpreted as the best model prediction and that would represent the best fit in 
a traditional deterministic approach. Usually, the residual analysis is performed du-
ring the calibration while predictive distributions are checked in the model validation.

Confidence and prediction intervals 
To quantify the uncertainty of model predictions i.e. p(Y), it is useful to compute 

the highest probability density regions. These can be computed as uncertainty bands 
expressed between the upper and lower uncertainty limits, which are defined as the 
prediction intervals (PIs) (Shrestha, Solomatine 2006). PIs usually refer to model 
predictions computed for future events, in validation. In the same fashion, PIs may be 
computed for model simulations in calibration period. In some application, it is useful 
to compute the confidence intervals or creditability intervals (CIs) which represent 
the uncertainty only due to the parameter uncertainty of a deterministic model. PIs 
are wider than CIs because they consider additionally input and output uncertainties. 

PIa and CIa may be approximated by quantile ranges, typically as (100 − ψ)% 
where ψ defines a range of the prediction intervals (Congdon 2003). Then PIs or CIs 
are defined as bands between lower and upper limits that correspond to (ψ/2)% for 

Fig. 3.4. Uncertainty intervals; Yo is observed variable, Y is predicted variable, 
p(Y(100 − ψ)%) are (100 − ψ)% – predictions interval, Y(ψ/2)% and Y(100 − ψ/2)% 

are lower and upper limits respectively, Y(50)% is the prediction median
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lower and (100 – ψ/2)% for upper limits (Fig. 3.4). Typically, PIs or CIs for 95% or 
90% are computed. The 95% uncertainty bands provide with bands within which 
a predicted variable falls with 95% probability. 

To summarize the predictive capability of the model, usually two uncertainty 
metrics are estimated (Montanari, Koutsoyiannis 2012; Del Giudice et al. 2013): 
i) data coverage and ii) sharpness. The first one indicates how many percent of the 
observation data are covered by the PIs or CIs. The closer (or greater) the percent 
of data coverage to the (100 − ψ)% value is, the more reliable such PIs can be con-
sidered. For instance, for 95%-PIs the coverage of data should be ideally equal or 
higher than 95%. The sharpness measures the average width of the PIs. Ideally, the 
narrower bands are, the more useful they are. However, the bands have to still fulfill 
condition i) to be considered as reliable.

3.4.4. Model prediction performance 

Because future events cannot be known, it is a common practice to assess the 
model performance by splitting the available data into two sets i.e. calibration and 
validation periods. Thus, a model is usually calibrated using part of all data and 
validated on the remaining data points, e.g. 10% or 20% (e.g. Haddad et al. 2013).  
Splitting data into two datasets requires enough observation data for both datasets. 
If the available data is limited or in case of event-based modelling, it is a standard 
practice to use a cross-validation instead. In general, this technique uses a (random) 
part of data set to calibrate model and the remainder to validate it (e.g. Haddad et al. 
2013). Next, the procedure is redone for different parts of data so that the validation 
is executed for the whole data set. One of mostly applied cross-validation techni-
ques is a leave-one-out cross validation method (e.g. Wang, Robertson 2011). This 
method uses all data set apart from a random single event (dataset) to calibrate the 
model and the remaining event to validate the model performance and is especially 
useful in event-based modelling. The leave-one-out cross validation method can be 
summarized in following steps:
1.	 select a single event from all k available;
2.	 use remaining events to calibrate the model;
3.	 validate model on the event that was not used for the calibration;
4.	 repeat steps 1-3 k-times so that each event is used to validate the model.

3.4.5. Predictive uncertainty decomposition 

From Eq. 3.6, model predictions p(Y) depend on pdf of model parameters p(θM). 
Treating all model parameters as a single vector θM is convenient if only the predic-
tive distribution p(Y) is of interest. However, one may be interested in knowing how 
the uncertainty of a particular model parameter denoted as θMj contributes to the total 
p(Y). In other words, how sensitive is the model and model predictions to changes 
in values of the θMj (Saltelli et al. 2000). To this end, the computed predictive di-
stribution may be conditioned on θMj (Christensen et al. 2011) giving conditional 
distribution p(Y|θMj ).
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In practice, it can be achieved by keeping θMj at the maximum of the posterior 
marginals (mode) and letting other parameters to vary within derived posteriors. 
Remaining parameters are then sampled from the posterior distribution conditional 
on the maximal posterior marginals of those parameters that are kept constant. So 
the Eq. 3.7 becomes: 

Where θMj is the mode of the p(θMj), p(Y|θM) is the likelihood, p(θM-[Mj]) is the 
parameter distribution when excluding the θMj parameter. 

By comparison with the full predictive distribution, one can indicate the rela-
tive importance of its components. Such a comparison of prediction uncertainty is 
preferable because it takes into account mutual parameters dependencies included 
in the posterior. In regard to hydrological flooding studies, it is more interesting to 
evaluate the importance of different uncertainty sources rather than the uncertainty 
arising from individual model parameters. Conceptually, Eq. 3.12 can be extended to 
assess contributions of parameter groups. To do so, a vector θM may be decomposed 
into its sub-vectors as: θM = (θMI, θMII,..., θMZ). Where θMI, θMII,..., θMZ represent now 
Z parameter subsets. The contribution of a particular sub-vector into the total p(Y ) 
may be then evaluated by conditioning the total predictive distribution on each of 
these sub-vectors.

3.5. Uncertainty consideration in hydrological modelling 
3.5.1. Description of the model structure deficits

Gaussian error model 
The classical assumption on E in Eq. 3.3 is that the model error is represented 

by a Gaussian error. This means that model residuals (see Sect. 3.4.2) are indepen-
dent and identically (normally) distributed (i.i.d.) random variables with a mean of 
zero (Reichert 2011): 

Such an error term is usually introduced to lump together all uncertainty in hy-
drological modelling i.e. input, structural and output uncertainty. It is also usually as-
sumed that E is constant over the time so that current model residuals do not depend 
on model errors observed in the past. This assumption is mathematically convenient 
and easy to implement and therefore has been widely used in applied hydrology 
(Yang et al. 2007). Unfortunately, this assumption was shown to be often violated in 
hydrological modelling since residuals of hydrological models are usually strongly 
auto-correlated (e.g. Romanowicz et al. 1994; Kuczera et al. 2006; Sikorska et al. 
2012a, b; Wang et al. 2013). Intuitively, the residual autocorrelation is in an agre-
ement with a RR process within a basin and can be explained by a basin memory 
effect due to current hydrological conditions. Therefore, model errors are expected 
to strongly depend on previously observed errors. 

(3.12)p(Y|θMj) = ∫ p (YC|θM) p (θM-[Mj]) dθM-[Mj]~

~

E(ti) ~ N(µE, σE)	 where	 µE = 02 (3.13)
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Lumped autoregressive error model 
A promising alternative is a lumped continuous-time autoregressive error mo-

del (LEM), e.g. Brockwell, Davis (1996), Brockwell (2001), Yang et al. (2007), 
which is based on more realistic assumptions but has not been widely recognized so 
far (Del Guidice et al. 2013, Sikorska et al. 2012a). The LEM is especially useful to 
analyse time series e.g. streamflow data. It takes more justifiable assumptions than 
the Gaussian error model since it assumes that model residuals in the future intervals 
depend on the residuals that were already observed before. Residuals of the LEM 
are sometimes called as innovations. The relation between residuals of the LEM and 
Gaussian model is as follows:

The LEM has two parameters: an asymptotic standard deviation (σI) and a cha-
racteristic correlation time of an error process (τ). The asymptotic standard deviation 
is described as:

 Where σE is a standard deviation of the error process E from Eq 3.13. If 
a time difference between observations (ti − ti−1) is large comparably to τ, than σI = σE. 
If τ = 0, no correlation is assumed and LEM process becomes the independent Gaus-
sian error as in Eq. 3.13. The LEM is continuous in time and therefore can also han-
dle missing or irregularly spread data. 

Such a LEM error model is sufficient to model the total predictive uncertainty 
(PU). However, if contributing sources are of interest, a separate treatment of uncer-
tainty sources is recommended in order to quantify their contribution to the predicti-
ve uncertainty, see Sects. 3.5.2-3.5.3. 

Variable transformation 
Because in practice it is easier to deal with normally distributed errors, it is 

a common practice to apply a transformation function on variables (Yang et al. 2008; 
Wang et al. 2009; Sikorska et al. 2012a; Del Giudice et al. 2013; Honti et al. 2013). 
Thus, both variables can be transferred into the appropriate transformed space where 
transformed model errors can be assumed as i.i.d. and thus easier stabilized (Wang et 
al. 2013). This is particularly useful in hydrological modeling when the errors incre-
ase during high flow conditions (Del Giudice et al. 2014). A transformation function 
can be denoted as g; called also as a forward transformation. The transformed varia-
ble can be then written as:







 −
−−= −

− τ
1

1 exp)()()( ii
iii

tttEtEtI (3.14)

and   I(ti) ~ N(µI, σI )	 where	µI = 02 (3.15)

(3.16)





 −
−−= −

τ
σσ 12exp1)( ii

EiI
tt

t
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Where y and z are a variable and its transformed form respectively. Model er-
rors E are modelled then as an additive random process to transformed modelled 
variables z. After adding the random error to the transformed results, a backward 
transformation (g−1) is needed to the original scale for comparison with data (Yang 
et al. 2007, 2008): 

 Where y is the outcome of the deterministic hydrological model. The transfor-
mation functions g and g−1 are described by transformation parameters. Such para-
meters give degrees of freedom to improve the fulfillment of statistical distributional 
assumptions on model errors. The most widely used in hydrological modelling is the 
box-cox transformation in its one-or two-parameter forms (Yang et al. 2007; Wang 
et al. 2012), see Sect. 3.7. The two-parameter Box-Cox transformation is especial-
ly useful to deal with possible zero-values for a modelled or observed variable. If 
a variable takes non-zero values, the two-parameter Box-Cox transformation may 
be simplified to the one-parameter form. Alternatively, other transformations can be 
applied as e.g. Log-sinh transformation (Wang et al. 2012). The aim here is to use 
a transformation function that will allow one to normalize residuals and stabilize er-
ror variances. Usually preliminary analysis is required to evaluate different functions 
in order to choose the best transformation parameters.

3.5.2. Model parameter uncertainty 

Formally, all model parameters can be captured into a single vector θM : θM = 
{θM1, θM2,..., θMn}, see Sect. 3.1.2. Thus, the uncertainty on the model parameters 
is accounted for by representing their values as a joint probability density func-
tion (pdf): p(θM). p(θM) represents the prior, pdf established before considering data 
at hand, whereas p(θM|YC) represents the posterior, prior updated with data. By the 
prior, p(θM), it is assumed that model parameters are independent (Christensen et al. 
2011) and therefore usually pdfs of each θMi are derived separately. Although, it is 
not always the case, numerically it is convenient to evaluate and therefore common-
ly applied in practice (e.g. Yang et al. 2007; Reichert, Schuwirth 2012; Honti et al. 
2013). The computed posterior p(θM|YC), however, always contains mutual interac-
tions between model parameters. 

3.5.3. Input error model of precipitation 

Usually in hydrological models, the model input X from Eq. 3.3 consists of in-
put precipitation Px. Px contains errors mostly due to areal averaging and an inabili-
ty to accurately capture a real precipitation which is spatially and temporally diverse 
(see Sect. 3.2.4). These errors cannot be known because the real precipitation is not 
measured. This uncertainty of input precipitation is modelled as proposed by Kavet-
ski et al. (2006a, b). The input precipitation is tackled for each storm event with an 

z = g (y) (3.17)

Y = g–1 (z+E) = g–1 (g(y)+E) (3.18)

Uncertainty consideration in hydrological modelling 41

monography.indd   41 2014-10-08   09:01:19



individual rainfall multiplier marked as ζj as illustrated in Fig. 3.5. For each rainfall 
event a unique multiplier is required because the accuracy of capturing rainfall fields 
may change from one to another rainfall event due to diverse characteristics of each 
rainfall, e.g. spatial and temporal variability, rainfall intensity. The product of ζj and 
the input precipitation Px marked as Pζx is then used as an input into the model in-
stead of directly observed input rainfall Px. 

The rainfall multipliers cannot be known precisely beforehand. A priori, each 
ζj can be thus represented by the same probability distribution p(ζ). A vector ζ con-
sists of all multipliers ζ={ζj1, ζj2,..., ζjk} and can be further described as a random 
variable with an expected value of µζ and a standard deviation of σζ. These both 
parameters are integrated into a vector θζ and prior uncertainty is described as p(θζ). 
Intuitively, an expected value of rainfall multiplier may be assumed as one. This is 
reasonable because if the error of a rainfall measure would be known in advance, 
observed input rainfall should be directly corrected before modelling.

This rainfall multipliers approach has been proved to lead to a better performan-
ce of a hydrological model and parameter estimation (Kavetski et al. 2002). Howe-
ver, it is only suitable for event-based modelling. The method becomes insufficient 
for continuous modelling because it requires a separation of observed data into 
rainfall events what is not always straightforward. Moreover, rainfall multipliers 
must be inferred together with θM during the calibration. Thus, the number of para-
meters to be now calibrated increases with the number of analysed events (k). 

3.5.4. Consideration of calibration data uncertainty 

The uncertainty in calibration data for rainfall-runoff models (output uncertain-
ty) is considered by acknowledgement of the uncertainty in observed streamflow Qo. 

Fig. 3.5. Idea of the rainfall multipliers approach; Px − observed rainfall, ζj − rainfall multiplier for 
the j-th event, Pζx − inferred observed rainfall after including rainfall multiplier ζj, j − index of the 

rainfall event, j = 1, 2,..., k, k − number of analysed rainfall events
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As stated in Sect. 3.2.4, Qo is usually indirectly measured by converting a measured 
water level into „observed” streamflow Qo usually by the use of a water level-runoff 
model that typically is a rating curve (RC). A standard RC is a power law equation 
and has three empirical parameters which can be closed in a vector θRC = {θRC1, θRC2, 
θRC3}. These parameters cannot be known precisely (Sect. 3.2). The uncertainty in 
θRC is considered by p(θRC). This uncertainty propagates through the RC model and 
is further mapped onto estimated Qo. Thus, p(θRC) may describe the uncertainty of 
calibration data for RR models.

3.6. Example of uncertainty analysis application to SUB

In this Section the usefulness of the proposed uncertainty analysis is demon-
strated on two practical examples, in which water level and streamflow in SUB are 
modeled, see Tab. 3.1. These two cases are complementary to each other and they 
together focus on estimating the PU in SUBs for flood risk studies. Specifically, 
within the example I (Sect. 3.6.1), the uncertainty in streamflow predictions and the 
contribution of the input (typically mean areal precipitation) and hydrological model 
parameter uncertainty to the total predictive uncertainty are evaluated. The input 
uncertainty is modelled explicitly by rainfall multipliers approach (Sect. 3.5.3). The 
uncertainty of water level predictions and the importance of the output uncertainty 
to the total PU are evaluated within the example II (Sect. 3.6.2). The output uncer-
tainty describes the uncertainty in calibration data for RR models, which is typically 
derived with RC (Sect. 3.5.4).

3.6.1. Example I – uncertainty of streamflow predictions 

The first example illustrates a traditional approach in RR modelling when ma-
king predictions for future (unknown) events. To this end, the RR model is first 
calibrated against past recorded rainfall-streamflow data and next used to predict 
streamflows in response to some assumed rainfalls. Thus, in this example two uncer-
tainty aspects are evaluated: 
•	 the total uncertainty of RR model predictions; 
•	 contribution of uncertainty sources (input vs. RR parameters). 

The assumption made here are as follows. Measurement errors of the calibra-
tion data for the RR model (typically streamflow), ε in Eq. 3.2, are significantly 

Table 3.1
Focus of the predictive uncertainty analysis in two application examples

Application 
example

Uncertainty treatment
Focus of UA

Structurea) Parametric Input Output
I O X X O Input
II O X O X Output

UA – uncertainty analysis. a) model structure deficits are implicitly modelled by the LEM; x indicates the uncertainty 
explicitly acknowledged, whereas o illustrates an implicit treatment of the uncertainty; lumped jointly into LEM
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smaller than other uncertainty sources. This can be assumed when a measure of the 
observed streamflow is said to be precisely, e.g. due to special efforts put into a ma-
intenance of the equipment, calibration and verification of data. This is a common 
practice in hydrological modelling that uses streamflow data to calibrate RR models. 

Given that, uncertainty sources are explicitly modeled by:
•	 Uncertainty of RR model parameters by p(θRR) as described in Sect. 3.5.2. 
•	 Input uncertainty is treated separately from the model bias B (Eq. 3.1) by tac-

kling input precipitation Px with rainfall multipliers (ζ) of which uncertainty is 
described by θζ (see Sect. 3.5.3).

•	 Measurement error of streamflow, ε, is lumped together with the model structu-
re deficits to a single error term represented now by Em. Note that this error is 
marked as Em in order to distinguish it from E which lumps also input uncer-
tainty (see Eq. 3.2). Em is described by LEM with parameters θLEM. To account 
for autocorrelated and not normally distributed errors of hydrological RR mo-
del, a likelihood function that combines the LEM with a Box-Cox transforma-
tion (see Sect. 3.5.1) is implemented as developed by Yang et al. (2007, 2008). 
Treating input error explicitly allows one to assess weights of input vs. model 

parameter uncertainty at the next stage. To this end, an additivness of different un-
certainty sources is assumed (Sect. 3.4.5).

Stochastic modelling of RR input 
Input precipitation into RR model Pζx is modelled by correcting the observed 

input precipitation Px with rainfall multipliers ζ, see Fig. 3.6 (also Sect. 3.5.3). Thus 
Px is described as:

 R is the input rainfall error model. ζ is modelled as a random variable of which 
probability is obtained by marginalising the joint probability distribution of input 
error model parameters i.e. θζ and ζ: 

 Stochastic modelling of rainfall-runoff (RR) 
The real streamflow Q is modelled as a sum of a deterministic RR model output 

q and an error term. This could be formalised accordingly to Eq. 3.3 as:

 Where q(Px,θRR) is a deterministic output from the RR model and E(θLEM) ac-
counts for model bias B (with input uncertainty) and measurement errors ε, compare 
with Eq. 3.2. Eq. 3.21 may be suitable if only the total PU is searched for. However, 
if the input uncertainty contribution is of interest, it must be explicitly acknowledged 
and separated from E(θLEM): 

Px = Px · ζ = R(Px, θζ )ζ (3.19)

p(ζ) = ∫ p(ζ ǀ θζ ) p(θζ )d(θζ ) (3.20)

Q = q(Px, θRR ) + E(θLEM ) (3.21)

Q = q(R(Px, θζ ), θRR) + Em(θLEM ) (3.22)
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Where R(Px,θζ) = Px
ζ, see also Fig. 13. Em(θLEM) lumps now only model structure 

deficits and measurement errors, while input uncertainty is represented by θζ accor-
ding to Eq. 3.19. A practical form and a magnitude of Em cannot be known ahead 
and thus it must be assumed a priori, see Sect. 4.3 for practical recommendations. 
Availability of recorded data (QC

o) gives one the opportunity to update Em during the 
Bayesian inference. 

Predictive uncertainty of Q
The probability distribution of the model output p(Q) from Eq. 3.22 depends 

now also on θζ . In the same fashion, the likelihood function of the model output 
depends on θζ and is calculated as a joint distribution of the likelihood for the input 
error model p(ζ |θζ) (Eq. 3.20) and the likelihood for the RR model p(Q|θRR ,θLEM ,θζ ):

 For the notation simplicity and if only the total uncertainty analysis is of inte-
rest, all parameters are combined together into a single vector θI as θI = {θRR; θLEM; 
θζ}. Superscript I refers to the number of the application example. The uncertainty 
in θI is represented by p(θI). Thus, p(Q) can be evaluated by marginalizing the joint 
distribution of Q and all parameters (Sect. 3.4.1):

where p(Q,ζ |θI ) is the likelihood of Q (compare with Eq. 3.23). 

Fig. 3.6. Error model of the input uncertainty (R) and stochastic rainfall-runoff (RR) model; 
j − j-th rainfall event, j = 1, 2,..., k, k − number of rainfall events, Px, j − observed rainfall for j-th event, 
Pζ

xj − observed rainfall for the j-th event after including rainfall multiplier ζj, θRR −  parameters of the 
RR model, θζ − parameters of the ζ, θLEM −  parameters of the LEM model, j − modelled streamflow 
for j-th event, Em − error term for j-th event, Qj − real streamflow for j-th event, t −  time (over every 

event); dashed lines pinpoint error locations; bold font indicates a vector

p(Q, ζ ǀθRR, θLEM, θζ ) = p(Q ǀθRR, θLEM, θζ ) p(ζ ǀθζ) (3.23)
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Uncertainty contribution
An explicit treatment of diverse uncertainty sources in Eq. 3.24 allows one to 

assess how the total PU p(Q) is dominated by its contributing sources. Thus, Eq. 3.24 
can be rewritten as:

To this end, an uncertainty analysis as described in Sect. 3.4.5 is undertaken in 
which either ζ or θRR are kept constant at their modes. For instance, assessing input 
uncertainty contribution would result in the following distribution: 

Where ζ and θζ refer to the best estimate (mode) of rainfall multiplier and its 
parameters for a particular rainfall event.

3.6.2. Example II – uncertainty in water level predictions 

Introduction – problem in calibrating RR model 
To improve model predictions, the RR model from Eq. 3.21 can be calibra-

ted against recorded data that is typically QC for the RR. The calibration is usually 
complicated by the fact that the output of the RR model (Q) is not measured directly 
and must be derived from measured water levels LC with help of another model (see 
Fig. 3.7 and Sect. 3.2.4). Consequently, a standard RR model calibration procedure 
consists of following steps (Sikorska et al. 2013):

1.	 A water level Loi is measured directly and a streamflow Qoi indirectly e.g. by 
hydraulic measurements (see Sect. 3.2.4) for few temporal measured conditions.

2.	 Based on these temporal relations Loi – Qoi a water level-runoff model (LR) that 
relates streamflow to the observed water level is constructed: 
 where θLR is a parameter vector of the LR model and ELR is the error term of the 
LR model and compensates here for all errors of the method (see Sect. 3.2.4). 
Usually it is assumed that ELR is normally distributed around zero mean.

3.	 LR is calibrated to match the measured temporal streamflow records. 
4.	 LR established on the step 3 is next used to obtain continuous streamflow data 

based on measured continuous water levels Lo using the best approximation of 
model parameters θLR and while neglecting ELR: 

5.	 computed at the step 4 are next used as QC to calibrate the RR model. This can 
be formalized by comparing QC and Q from Eqs. 3.28 and 3.21:

p(Q ) = ∫∫∫∫ p(Q, ζ ǀθRR, θLEM, θζ ) p(θRR, θLEM, θζ)dθRR dθLEM dθζ dζ (3.25)

(3.26)p(Qǀζ) = ∫∫∫∫ p(Q, ζ ǀθRR, θLEM, θζ ) p(θRR, θLEM, θζ)dθRR dθLEM dθζ dζ
~ ~ ~ ~

~ ~

Ԛ = LR(Lo, θLR) + ELR
̭

(3.27)

(3.28)Ԛ = LR(Lo, θLR)~

Q(Lo, θLR) = q(Px, θRR) + E(θLEM) ~ ~ (3.29)
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The described procedure might be useful to obtain the ’best fitting’ parameters 
for the RR model (θRR). However, it has two conceptual drawbacks as for the uncer-
tainty analysis of streamflow predictions. Namely, i) the error term of the LR model 
ELR is ’lost’ at the fourth step of the procedure and never ’seen’ by the RR model; ii) 
the uncertainty in θLR is neglected. Even though, due to the error propagation, when 
RR model is calibrated against the average streamflow QC, computed with θLR, E will 
contain also the uncertainty of the LR model so the ’lost’ ELR. 

Uncertainty analysis of water level predictions 
In the example I (Sect. 3.6.1) it was assumed that the uncertainty in the cali-

bration data for the RR model are much smaller than other uncertainty sources. Ho-
wever, as showed in Sect. 3.6.2, this uncertainty may be significant if the calibration 
data for RR models consist of streamflows derived from water levels usually with 
the use of a simple water level – runoff model which is typically a rating curve (RC). 
Therefore, the example II by directly modelling water levels with the runoff-water 
level (RL) model assess: 
•	 the total uncertainty of RL model predictions; 
•	 relevance of the output uncertainty by comparing RR vs. RC parameter uncertainty. 

~
~

Fig. 3.7. Representation of the rainfall-runoff (RR) model calibration problem. Dashed lines pin- 
point location of possible errors. Random quantities are shown in ellipsoids, deterministic in squares. 

Notation: P, Q, L represent real precipitation, streamflow and water level; Po, Qo and Lo represent 
observed variables; Px is input precipitation into RR model; Qoi represents measured streamflow 

records for LR calibration; Q̂  is streamflow modelled with water level-runoff (LR) model;
q̂ is streamflow modelled with RR model; θRR – RR model parameters

θLR – LR model parameters; bold font indicates vectors
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The assumptions made here are that water levels are modelled in two steps by 
RL model which consists of two submodels RR and RC, see Fig. 3.8. Measurement 
errors of water level for the RL model, ε in Eq. 3.2, are significantly smaller than 
other uncertainty sources (see also Sect. 3.2.4). 

Explicitly modelled uncertainty sources: 
•	 Uncertainty in RL model parameters are explicitly described by RR and RC 

sub-model parameters as p(θRR) and p(θRC). RC refers to the rating curve.
•	 Input uncertainty is treated together with structural model uncertainty represen-

ted by model bias B (Eq. 3.2). 
•	 Measurement error of water levels, ε, is lumped together with B to a single 

error term E, which is described by the LEM parameters θLEM (Sect. 3.5.1). 
A likelihood function which combines the LEM with a Box-Cox transforma-
tion is used to account for autocorrelated and not normally distributed errors of 
the RL model. 
Treating RR and RC model parameters separately allows one to assess weights 

of RR vs. RC parameter uncertainty at the stage 2 and thus the relevance of output 
uncertainty for RR models. 

Stochastic modelling of rainfall-water level (RL) 
The real water level L is modelled as a sum of a deterministic RL model output 

l and an error term E accordingly to Eq. 3.2, see also Fig. 3.8: 

Fig. 3.8. Representation of the rainfall-water level (RL) model. Dashed lines pinpoint location of 
possible errors. ˆl is water level modelled with RL model. Other notation as in Fig. 3.9
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where θRL is a vector with RL model parameters (θRL = {θRR;θRC}). Although, concep-
tually similar to the RR transformation, this process usually is not straightforward to 
model because it involves an internal state of streamflow q that in such description 
is not modelled directly (Fig. 3.8). Therefore, in practice, RL consists of two submo-
dels: rainfall-runoff and runoff-water level. The first part consists of the RR model 
as described in Eq. 3.21, while the second one usually is modelled by the inverse of 
a LR model from Eq. 3.27 and thus noted as LR−1: 

where the error term E lumps input uncertainty, measurement uncertainty of L and mo-
del structure deficits of both sub-models RR and RL−1. Because E cannot be known in 
advance it must be assumed a priori. Availability of recorded data (LC) makes it possi-
ble to estimate E by means of the Bayesian inference. Note, however, that q is now an 
internal state of the RL model and is not modelled directly. Thus, a calibration process 
only leads to a better fit of l to L without considering a match of q to Q (Fig. 3.10). 
Consequently, inferred parameters of RR submodel most likely will not be identical 
with the parameters of RR model when the RR model is calibrated alone (Sect. 3.6.1). 

Predictive uncertainty of L 
To assess the PU of L, all parameter vectors i.e. θRR, θRC and θLEM are combined 

together to the θII; θII = {θRR; θRC; θLEM}. Superscript II refers to the number of ap-
plication example. Then, the probability distribution of the LR model output can be 
described by marginalizing the joint probability distribution of L and all parameters: 

where p(L|θII) = p(L|θRR, θRC, θLEM).

Uncertainty contributions 
By an explicit acknowledgement of both parameters θRR and θRC in Eq. 3.32, 

their contribution to the total PU may be addressed by means of the sensitivity ana-
lysis when either θRR or θRC are kept constant at their maximal probability values 
(modes). For assessing the RC contribution, p(L) results in a following distribution:

 3.7. Implementation 
3.7.1. Implemented likelihood function

The likelihood is strictly required in the Bayesian inference in order to explore 
a defined prior and to deliver the predictive distribution of the model. Likelihood 
(function) describes the pdf of observing the data Y given the model M and model 

L = l (Px, θLR) + E (θLR) (3.30)

L = LR-1 (q(Px, θRR), θRC) + E (θLEM) (3.31)

p(L) = ∫ p(L|θII) p(θII) dθII (3.32)

(3.33)p(L|θRC) = ∫∫∫ p(L|θRR, θRC, θLEM) p(RR, θRC, θLEM) dθRR dθRC dθLEM~ ~ ~ ~
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parameters θM as p(θM). Then for each candidate parameter set θMi from the defined 
prior parameter space p(θM) a likelihood p(Y|θM) for given observations Y can be 
computed. A value of the likelihood function is proportional to the probability that 
the observations could have been generated by the parameter set θMi i.e. p(Y|θMi) 
(Congdon 2003).

In combination with the transformation function g, the following likelihood 
function results (Yang et al. 2007, 2008; Sikorska et al. 2012a, 2013):

where yo;t is an observation and yt(θM) is a simulated model response at time t. Note 
that this form of the likelihood is valid for different transformations and only trans-
formation functions g and g-1 change. 

For estimation of rainfall multipliers an explicit likelihood must be defined and 
is given in Eq. 3.35.

where i is the number of rainfall multipliers (and rainfall events).

3.7.2. Box-Cox transformation

A general (two-parameters) Box-Cox transformation (Box-Cox 1964, 1982; 
Yang et al. 2007; Sikorska et al. 2012a) can be written as:
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where y is the system outcome (observed Y or modelled y), z is a forward transfer-
red system outcome. λ1 and λ2 are Box-Cox transformation parameters. Note that 
g includes the identity (λ1 = λ2 = 1) and a log-transformation (λ1 = λ2 = 0) as special 
cases. The two-parameters Box-Cox transformation is especially useful to deal with 
possible zero-values for a modelled or observed variable. Thus, λ2  is set to non-zero 
value. Thus, not y but y + λ2 must be grater than zero. In addition, z must be larger 
than zero for all values of z. If a variable takes non-zero values, the two-parameters 
Box-Cox transformation may be simplified to the one-parameter form by setting λ2 
to zero. So the one-parameters Box-Cox transformation can be written as:

3.7.3. Uncertainty analysis and uncertainty bands

Bayesian uncertainty analysis can be easily implemented in R programming 
language (R Development Core Team 2011), which is an open-source and thus is 
competitive to the other paid programming languages. Computation of the posterior 
uncertainty bands requires numerical implementation which allows for evaluating 
the likelihood function. In practice, this is extremely difficult but there are currently 
available algorithms that allow approximating the posterior by sampling from it. To 
this end, Monte Carlo Markov Chain (MCMC) algorithms can be easily adapted. 
Currently, there are a few practical algorithms available which allow one for a suf-
ficient sampling. One of those is the generic adaptive MCMC algorithm proposed 
by Haario et al. (2001) and implemented by Vihola (2012) based on the Metropolis 
sampling (see below). These samplers adjust the covariance matrix of the jump di-
stribution of searched parameters to achieve a defined rejection rate and thus guaran-
tees efficient sampling and fast posterior convergence.
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Markov Chain Monte Carlo (MCMC) sampling
The most popular are Markov Chain Monte Carlo methods (MCMC) that sam-

ple repeatedly from the joint posterior of all parameters. The sampling is evaluated 
by creating a random walk (Markov Chain) through the search space of the parame-
ter distribution based on the a’priori assumption pdf(θ) (Vrugt et al. 2008b). This 
means that to every position within the whole parameter space there is assigned 
a unique pair of parameter values. To explore this space, MCMC generates a trial 
of move (υ) based on the present location (ωt−1). This trail u is either accepted or 
rejected depending on chosen from a parameter space values (see Fig. B.2). For the 
associated parameter values with this trail υ the model is run and for its response the 
likelihood function is evaluated and compared with the likelihood for observations. 
The difference between both is called a likelihood value Le and is a function that 
quantifies how well chosen particular parameter combination simulates the system. 
Higher values of the likelihood function typically indicate better correspondence 
between the model predictions and observations (Vrugt et al. 2008b). The cruel va-
lues within the MCMC are: a number of sampling, a scale factor of each parameter 
α, which develops the step between (ωt−1) and (υ), and initial values of parameters. 
The initial values affect the chain only in its initial part, which in case of inaccurately 
selected values, need to be separated from the main chain. This pre-phase is descri-
bed as burn in effect (see fig. 3.11). Properly selected initial values allow achieving 
satisfactory results in a relevant short time.

MCMC-Metropolis sampling 
Within the MCMC Metropolis algorithm the trial position is sampled from the 

proposal distribution π(). Next the trial move is either accepted or rejected depending 
on the metropolis acceptance probability (Fig. 3.11), where: π() − density of the tar-
get distribution. If the trial is accepted the chain moves to its position (υ), otherwise 
remains at the current location (ωt−1), see also Fig. 3.9.

Fig. 3.9. A scheme of the Markov Chain Monte Carlo sampling;
solid line presents a move when accepted position, dashed line – when rejected, doted line – next 
evaluation, ωn – current position, υn – next proposed position, n – number of the move/position
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Adaptive MCMC sampling
The main problem of the Markov Chain Monte Carlo techniques to sample 

from the posterior distribution is often a very slow convergence, especially when 
a prior is uninformative. The important advantage of the adaptive algorithm MCMC 
is therefore the possibility to permanently adopt the proposal distribution during the 
simulation run (Reichert 2011). That saves many unnecessary runs and allows for 
faster achievement of satisfactory results in a relevant short time, even if the initial 
values or a scale factor were not chosen properly.

Parallel MCMC chains
A possible extension is to run several Markov Chains in parallel and couple 

them adaptively. This leads to the posterior which summarizes results over all cha-
ins and usually allows for a better penetration of the parameters space. The limiting 
factor here is the computation time, which for many environmental models may be 
impossible to overcome.

Alternatively, other algorithms are available (Gilks et al. 1995; Haario et al. 
2001; Brooks et al. 2011; Chievers 2012). 

Monte Carlo Simulation
Because usually it is difficult to describe the predictive distribution of model’s 

outcomes by statistics, it must be approximated. The most popular method to do so 
is a Monte Carlo simulation (MC). MC methods (or Monte Carlo experiments) are 
a class of computational algorithms that rely on repeated random sampling to com-
pute their results (Fig. 3.10). MCs are commonly used to approximate predictive 
uncertainty intervals by performing multiple and numerous runs by randomly sam-
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Fig. 3.10. Monte Carlo simulations; where qi, qj are i-(j-)quantiles
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pling from the system space. The system space is defined as a space with all model 
possible solutions that may be obtained by running the model including parameters, 
model, input, output uncertainty.

3.7.4. Preliminaries 

Necessary preliminaries include an elicitation of the parameter prior for the 
Bayesian inference and a choice of a transformation function for the modeled varia-
ble. Ideally, a function that allows for the best fulfilment of statistical assumptions 
underlying the chosen likelihood function and provides with realistic uncertainty 
bands is searched for. Usually some preliminary analysis are required in order to 
chose the best solution. This could be easily undertaken within the R programming 
language.

In addition, a sufficient number and length of Markov’s chains which will en-
sure a good coverage of the parameter space should be chosen during preliminary 
trails. It is suggested to seek a compromise between a number of sample runs within 
the chain and computation time. Similarly, properly chosen initial values shorten the 
time required to fully explore the posterior. Those can be found with optimization 
methods. To minimize the effect of initial values, it is a common practice to cut away 
a burn in period at the beginning of the chain (Fig. 3.13).

Fig. 3.11. Example of the MCMC chains; Black line – MCMC; X-axis – number of MCMC runs; y-axis – 
parameters values; green line – burn in; BOTTOM – uninformative and TOP – informative initial values
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4. MATERIAL – RESEARCH BASIN 
AND HYDROLOGICAL MODEL STRUCTURE

4.1. Research basin

4.1.1. Overview

The proposed uncertainty analysis was tested on a small research basin, the 
upper part of the Sluzew Creek, located in south-west part of Warsaw, Poland (see 
Fig. 4.1). The Sluzew Creek basin, upstream of the investigated gauge „Wyscigi 
Pond”, has an area of 28.7 km2 and is rather flat; the elevation varies from 95 m to 
110 m above mean see level. The average annual precipitation in this part of Warsaw 
is about 520 mm and the average daily temperature varies from -3°C in January to 
+18°C in July (WAU 2002). 

The Sluzew Creek basin was chosen for the study due to frequent flooding and 
flood-related sediment problems. In the last four decades Sluzew Creek has undergo-
ne rapid urbanization. Today urban areas cover 58.7% of the basin, whereas the ratio 
of impervious area of the whole basin is 32% (Sikorska et al. 2013). As a consequen-
ce, it is strongly affected by urban flooding (every second year) and associated sedi-
ment transport which mostly occur during the spring summer seasons (WAU 2002; 
Banasik et al. 2008; Sikorska, Banasik 2010; Sikorska et al. 2012). Unfortunately, no 
routine monitoring program exists and available data are limited to infrequent obse-
rvations in the last few year. This is a typical case for a SUB (Sects. 2.1.3 and 2.2.4), 
where due to rapid changes within the basin, an adequate monitoring program has 

Fig. 4.1. Overview of the Sluzew Creek basin location, Warsaw
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not yet been established. This also strongly affects nature of hydrological modeling 
in SUBs (Sect. 2.3).

4.1.2. Measurement sites and available data

For the purpose of this study, a dedicated monitoring program was performed. 
It consisted of continuous measurements of precipitation at six locations across the 
basin, stream water level and temporal hydrometric measurements at the basin outlet 
(see Fig. 4.2).

Rain gauges: Precipitation has been measured at three different locations (sites 
1-3 in Fig. 4.2) over the first three years (sites 1-3; July 2009 – October 2012). During 
the last period of the monitoring campaign (May – October 2012) three additional 
rain gauges were set up (sites 5-6 in Fig. 4.2). That gives in total three and a half hy-
drological years of measured precipitation with a temporal resolution of 10 minutes.

Stream gauge: A stream gauge has been installed at the outlet of the basin (see 
Fig. 4.1), here labelled as the Wyscigi Pond cross-section (WP). Monitoring program 
for the WP gauge included continuous measurement of water levels during three and 
a half years (July 2009 – October 2012), temporary measurements of a cross-sectio-
nal mean velocity during field experiments by means of the area-velocity method 
(WMO 2008) gathered regularly in intervals in 2010-2012.

Meteorological and hydrological data: As a result of the monitoring program, 
the following data were available for the purpose of the study: 35 rainfall-runoff 
(RR) events and 15 measurement points of area-velocity relations (see below).

Fig. 4.2. Gauges and their contributing areas for six locations
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RR events were selected based on the amount of total mean areal precipitation 
observed per event (>3 mm) and maximal streamflow observed during an event. 
A flow corresponding to more than three times the base flow over the analysed pe-
riod was chosen as a threshold (>0.6 m3 s-1). Storm events with discontinuous rainfall 
and during winter periods, due to potential snowmelt that can significantly contribute 
to runoff, were excluded from the further analysis. This is justifiable since only rain-
fall-runoff events are of interest.

Cross-section hydrometric data: Fifteen temporal measures of water velocity 
vs. water level were gathered over the period 2010-2012. Based on those, an em-
pirical rating curve (RC) was constructed using a power-law equation (see Fig. 4.3 
right). All records were collected during spring-summer seasons. Therefore, the va-
riation of the RC, although usually could be significant due to seasonal and alluvial 
changes within the channel, here may be assumed as irrelevant. RC was validated 
based on the information on the cross-section geometry collected via field measure-
ments (Fig. 4.3 middle).

4.2. Hydrological model description
4.2.1. Conceptual rainfall-runoff model (RR)

A deterministic rainfall-runoff (RR) model transforms input precipitation Px 
into output streamflow q (see Eq. 3.22). For a typical event-based RR model this 
process consists of three main stages:
1.	 estimation of the mean areal precipitation over the basin (Px);
2.	 evaluation of the effective rainfall (EP); the rainfall available for runoff after 

excluding loss for infiltration and surface retention;
3.	 routing of the EP to the basin outlet in order to determine the corresponding 

outlet streamflow (q).
The fi rst part is usually external to the RR. Thus, most of RR models take 

already estimated Px as an input variable. These three stages are here specifically 
modeled as described in details below.

Fig. 4.3. Wyscigi Pond cross-section (left and middle), Sluzew Creek, and an empirical rating curve (right)

Hydrological model description 57

monography.indd   57 2014-10-08   09:01:23



Mean areal precipitation
Px is estimated accordingly to the Thiessen polygons method (Thiessen, Alter 

1911) in which the entire area of a basin (Ac) is divided into n rainfall fields or po-
lygons (Ai) accordingly to station locations. The division between polygons is made 
by a line midway between the station under consideration and surrounding stations. 
A rainfall field is assumed to have the same precipitation as observed at the contri-
buting station (Pi). The mean areal precipitation over the basin (Px) is determined 
from the weighted average of all defined rainfall fields where weights are their cor-
responding areas:

This method, due to its simplicity and a practical value, has found widely appli-
cations in hydrological modelling (e.g. Montanari, Koutsoyiannis 2012). The limita-
tions arise from no smoothing in estimated rainfall fields.

Effective rainfall
The EP is estimated from Px based on the Soil Conservation Sservice Curve 

Number (SCS-CN) method, called also NRCS-CN (Natural Resouces Conservation 
Service Curve Number, Hawkins et al. 2009). The SCS-CN method was developed 
by United States Department of Agriculture (USDASCS 1986, 1989). This method 
is frequently applied to evaluate the EP for RR models in small and poorly gauged 
basins (Banasik et al. 1988; Walker et al. 2000; Rosso, Rulli 2002; Mishra, Singh 
2003; Hawkins et al. 2009; Soulis et al. 2009; Sikorska et al. 2012). The popularity 
of the SCS-CN method is caused, on the one hand, by including most of basins cha-
racteristics which produce runoff, such as soil type, land use and treatment, surface 
or antecedent moisture conditions. On the other hand, it has conceptual parameters 
that can be derived from physical properties of the basin. Therefore, it is feasible 
for modeling in small basins (Banasik et al. 2008; Hawkins et al. 2009; Soulis et al. 
2009; Mishra, Singh 2010) and also urbanised ones (Sikorska, Banasik 2010; Sikor-
ska et al. 2012a).

A cumulative effective precipitation EP(t) is computed here as:

where Px(φ) is the total mean areal rainfall at time φ(t) estimated accordingly to Eq. 
4.1, Smax is the maximal potential retention of the basin (mm), and I is the initial loss 
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∑
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(mm). I is usually event-specific and therefore difficult to estimate in advance. Thus, 
it is not modelled directly but assumed at a constant ratio of Smax: I = η × Smax, where 
η is the ratio of Smax and for urban basins typically equals 5 %, whereas for rural equ-
als 20% (Hawkins et al. 2009).

Streamflow at the basin outlet
The computed EP is convoluted into direct streamflow q at the outlet of the 

basin accordingly to the instantaneous unit hydrograph model (IUH) as proposed by 
Nash (1957). The concept of IUH was primarily developed by Sherman (1932) who 
defined the unit hydrograph (UH) as the direct runoff hydrograph resulting from a 
unit volume of effective rainfall of constant intensity which is uniformly distributed 
over the drainage area. The fundamental assumptions are that there is a linear re-
lation between the inflow (input) and outflow (output) and that effective rainfall is 
uniformly distributed over the entire river basin. These assumptions are justifiable in 
small basins. A general form of the Unit Hydrograph h(t) is described as:

where ∆t is an interval time, t is continuous and φ is discrete time, and u(φ) are the 
ordinates of the IUH at t. 3.6 is the units conversion factor. Eq. 4.3 is valid for diverse 
forms of IUH. Specifically within the Nash’s model (Nash 1957), the IUH is repre-
sented as a gamma probability distribution function and is described:

The parameters N [-] and k [h] describe a basin as a cascade of N linear reservo-
irs with a retention parameter k of each reservoir (see Fig. 4.4.).

h(t, ∆t) = Ac
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Fig. 4.4. Concept of a basin within the Nash’s model; 
IUH pools’ areas are always constant and equal to 1.
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EP(t) from Eq. 4.2 is next propagated through the cascade of N-reservoirs to 
produce q(t) at the basin outlet:

The parameters of the RR model are described by a single vector θRR : θRR = 
{Ac, Smax, k, N}. Because all θRR can be derived directly from the basin properties, 
a direct calibration of RR is not strictly required to provide streamflow estimates. 
The described RR model was used in two applications: in the example I to model 
streamflow (Sect. 3.6.1) and in the example II as a submodel of the rainfall-water 
level model (Sect. 3.6.2).

4.2.2. Rainfall-water level model (RL)

A rainfall-water level (RL) model introduced in Sect. 3.6.2 consists of: 1) the 
RR submodel as described in Sect. 4.2.1; and 2) a runoff-water level (LR-1) submo-
del, presented below.

Runoff-water level submodel
The LR-1 submodel is the inverse of the water level-runoff (LR) model (Eq. 

3.28). Here, a power law equation (e.g. Petersen-Øeverleir 2004; Di Baldassarre, 
Claps 2011; Domeneghetti et al. 2012; Le Coz 2012) has been used, which for the 
uniform cross section may be written as a classical rating curve (RC):

RC1; … ; RC3 are empirical parameters of the RC represented by a vector 
θRC = {RC1, RC2, RC3}. The LR model requires, however, the inverse form of the 
RC, so RC-1, which for a predicted water level l can be written as:

The parameters of the RL consist of the RC and RR submodel parameters (Eqs. 
4.6 & 4.7) i.e. θRL = {Ac, Smax, k, N, RC1, RC2, RC3}. The RL model was applied to 
model water levels in the example II (Sect. 3.6.2).

4.3. Prior knowledge elicitation

Bayesian inference requires an explicit formulation of the prior on all para-
meters as a probability density function. The aim is to find the distribution that best 
reflects the current knowledge. Unfortunately, this is not an easy task because no 
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q(t) = RC1(l(t) − RC2)RC3	 [m3 s-1] (4.6)

l(t) = ( q(t)
RC1)

1
RC3

+ RC2		  [m1s-1] (4.7)
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explicit rules exist (O’Hagan 1998; Scholten et al. 2013). Therefore, for the purpose 
of this study, an approach to establish a prior has been developed. A prior on the de-
terministic models is elicited by means of the parametrization process (Sect. 2.2.2), 
whereas for the error models (Sects. 3.5.1 and 3.5.3) it takes advantage of expert 
knowledge and previous experience (studies). The approach is directly transferable 
to other research studies where the same models are applied. In a similar fashion, 
a prior on other hydrological model parameters with physical meaning could be 
obtained.

Since it is intricate to describe dependencies between prior parameters before-
hand, an independence between all parameters is assumed a priori as done by Yang 
et al. (2007), Reichert and Schuwirth (2012) or Honti et al. (2013).

4.3.1. RR model parameters

In the following, the probability distribution function p(θRR) is defined, θRR = 
{Ac, Smax, k, N} (Sect. 4.2.1). Ac represents the area of a basin in [km2] and can be 
derived from topographic maps or GIS data. Smax, the maximum potential retention 
capacity of the basin [mm], is related to the Curve Number (CN) (USDA-SCS 1986, 
1989) as:

CN [-], represented as a function of basin land-use types, soil groups and hydro-
logical conditions, is estimated as the average value over the entire basin according 
to the empirical values investigated by USDA-SCS. Usually CN can be derived from 
GIS data. An error of 10% of the estimated mean due to inaccurate maps may be 
assumed for both Ac and CN (Sikorska et al. 2012a). If no GIS data are available for 
SUB, these values must be elicited from topographic maps. However, while Ac usu-
ally remains constant for a basin over time, Smax may alternate. Thereto a sufficient 
wide prior distribution on Smax should be used.

k [h] and N [-] are Nash’s model parameters and their average values may be 
derived directly via different empirical methods or indirectly through a relation to 
IUH characteristics (tp & up). The relation between N, k and tp, up are as follows:

where Nk = Lag, which describes the lag time [h]. Such empirical methods link pa-
rameters values to basin characteristics. However, their results may be biased. The-
refore, it is proposed to use in parallel several empirical equations in order to infer 
parameter values. These values can be used to establish a prior, e.g. by the method 
of moments (Sikorska et al. 2012a). Here, five different empirical methods presented 
in Table 4.1 are applied simultaneously to fit the prior distribution for N and k. The 

Smax = 25.4(1000
CN −10) (4.8)

tp = k (N − 1)	 	 [h] (4.9)

u(t) = 1 
kГ(N)

(N − 1)N−1

e N–1 [h-1] (4.10)
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choice of applicable methods was dictated by its usefulness also for basins with poor 
information and also due to popularity of these methods in Polish conditions. The 
approach could be extended to other relations including exploratory analysis of the 
hydrographs (Haan et al. 1994; Bhunya et al. 2003; Jain et al. 2006; Singh 2007).

4.3.2. RL model parameters

The vector θRL consists of two sub-vectors θRR, as above, and θRC = 
{RC1,  RC2, RC3} (Sect. 4.2.2). RC parameters should be ideally defined from some 

Table 4.1
Methods to derive IUH characteristics and Nash model parameters

Method tp or k up or Lag

1. SCS
(USDA-SCS 1986) up = 0.75 1

tp

2. Lutz
(Lutz 1984) tp = P1

LLc

J1.5
g

( )0.26

e-0.016U e0.004W up = P2
1

tp
P3

i)

3. Rao
(Rao et al. 1972) k = 0.56 A0.39 Pe

−0.11 De
0.22(1 + U)−0.62 Lag = 1.28 A0.46 Pe

−0.27 De
0.37(1 + U)−1.66

4. GIUH
(Rogrίguez-Iturbe, 
Valdes 1979)

RA

RB
( )tp = 0.44

0.55

RL
–0.38 LΩ

v
up = 1.31 RL

0.43

LΩ

v ii)

5. GCIUH
(Nowicka, 
Soczyńska 1989)

tp = 0.33П
0.67

П = n1.5BΩL2.5
Ω

S0.75
Ω R 0.6

L AΩ ir tr

up = 1.53П0.67
1

i) P2 = 0.64, P3 = 1.04 [Lutz 1984]
ii) v = 0.665 · α0.66

Ω · (ir · A)0.4, αΩ = 
S0.5
Ω

nB 0.67
Ω

 in (m-1s-1/3) and RB/RA = 0.8 [Rodriguez-Iturbe et al. 1982; Hall 
et al. 2001]
Notes: L – lenght of the stream to the central point, assumed to be equal to 0.5 l, U and W – ratio 
of urbanized and forest areas (%), P1 – parameter dependent on the roughness of the stream, P2 and 
P3 – dependent on the interval of estimation, Lag – Lag time (h), A – total basin area (km2), U – fraction 
of the impervious area in the basin (-), Pe and De – amount (mm) and duration (h) of effective rainfall, 
ir and tr – effective rainfall intensity (cm h-1) and its duration (h), AΩ, BΩ, LΩ – area (km2), width (m) and 
length (km) of the highest order stream, RA, RB and RL are the Horton area, bifurcation and length ratios 
of the basin [Tarboton 1996], v – average peak flow velocity (m s-1), n – Manning roughness coefficient 
(m-1/3s-1) 

tp = 
1000
CNL0.8 ( − 9)0.7

2.92 J 0.5
z
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field observations. For this purpose already existing data obtained from hydrometric 
measurements of cross-sectional average velocities and corresponding water levels 
can be easily adapted (Sikorska et al. 2013). Thus, it is proposed to calibrate the RC 
according to Eq. 4.7 with the standard Maximum Likelihood Estimate (MLE). MLE 
is a standard non-Bayesian technique to estimate single parameter values that give 
the best fit to the observed variable. In practice, MLE simply maximizes the likeliho-
od function (Christensen et al. 2011). Next, p(θRC) can be derived using large sample 
size properties of the MLE (e.g. Harrell 2010). A clear merit of using MLE is that 
such a prior contains information on mutual correlations within θRC. If no hydrome-
tric measurements are available, one can consider constructing the RC according to 
the information on cross section geometry which, depending on the cross-section, 
can be obtained already from a single field inspection.

4.3.3. Lumped error model parameters (LEM)

The elicitation of the LEM model parameters θLEM (Sect. 3.5.1) is intricate due 
to the fact that they do not have a direct physical meaning. Mostly, because θLEM com-
pensates for all errors not explicitly acknowledged in the study. Thus, θLEM differs in 
both examples. Namely, θLEM represents a combination of model structure errors and 
streamflow measurement errors in the example I (Sect. 3.6.1); and model structure 
and input precipitation error in the example II (Sect. 3.6.2). To represent such lack of 
knowledge on LEM parameters it is recommended to select wide positive distribu-
tions; e.g. gamma or log-normal distributions (see Table 5.2 for an example).

4.3.4. Input rainfall error model parameters

For urban basins, a log-normal distribution with a mean 1 has been suggested as 
a good prior on θζ (e.g. McMillan et al. 2011; Sikorska et al. 2012a):

The standard deviation σζ [-] can be assumed based on the information of rain-
fall measurements (its accuracy and representativeness).

5. RESULT EXAMPLE: BAYESIAN 
UNCERTAINTY ANALYSIS IN SUB
5.1. Results of the preliminary analysis

Elicited prior for the Bayesian inference
The resulting prior elicited for the experimental basin of Sluzew Creek (Sect. 

4.1) for two models: rainfall-runoff (RR) and rainfall-water level (RL) in two appli-
cation examples is presented in Table 5.1. In addition, Table 5.2 presents results of 
the parametrization process for two parameters of the conceptual RR model, N and 
k (Sect. 4.2.1). The correlation of both parameters is verified in Fig. 5.1. As can be 
seen, no significant correlation between both parameters appeared.

ζ ~ LN(μζ;σ2
ζ )	 where	 μζ = 1 (4.11)
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Table 5.1
Prior distribution for the Sluzew Creek basin

Parameter Prior

Abbreviation Meaning Distribution; Mean; Standard deviation

Deterministic models
Rainfall-Runoff (RR) model

A basin area, [km2] N; 28.3; 2.8
Smax maximal potential retention of the basin [mm] LN; 55; 33
k retention time of a linear reservoir [h]a) LN; 2.0; 1.0
N number of linear reservoirs [-]a) LN; 3.2; 1.0

Rating Curve (RC) model
RC1 coefficient, or streamflow scale [–]b) N; -7.5; 1.1

RC2
location parameter, or cease to streamflow-wa-
ter level, in units of the water level, e.g. [cm]b) N; 16.8; 6.6

RC3
exponent, linked to the type and shape of 
the hydraulic control [–]b) N; 0.6; 0.1

Error models
Lumped error model (LEM)

σI
asymptotic standard deviation of errors 
[m3s-1], [cm], [mgl-1]c) Γ; 2; 2

τ
characteristic correlation time of the autore-
gressive process [min]

Γ; 300; 200

Input error model (R)
σζ standard deviation of n rainfall multipliers [mm]d) Γ; 0.1; 0.05

ζj
rainfall multiplier for each j from n rainfall 
events [-]e) LN; 1; E(σζ)

a) Distributions of N and k were derived from the empirical methods presented in the table 5.2; b) prior 
on RC parameters is described as a multivariate normal distribution; c) units of σI are of the modelled 
variable and therefore diverse for both experiments; d) n – number of selected rainfall-runoff events; 
e) ζj relates to the standard deviation of each rainfall multiplier, identical for all multipliers. Distribu-
tions: N – normal; LN – lognormal; Γ – gamma

Table 5.2
Nash’s model parameters, k & N, derived empirically for the Sluzew Creek basin and their prior distribution

Method k [h] N [-]
SCS 2.20 4.70
Lutz 0.63 3.63
Rao 1.74 2.16
GIUH 1.82 2.81
GCIUH 3.54 2.73
Prior LN; 2.0; 1.0 LN; 3.2; 1.0
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Parameters of transformation functions
In this study, the Box-Cox transformation was found to be sufficient in sta-

bilizing model residuals. The transformation parameters which worked best were: 
λ1 =  0:35 [-] for both examples and λ2 = 0 [m3s-1] for the example I and λ2 = 0 [cm] 
for the example II.

Preliminary trials
Preliminary Monte Carlo Markov Chains (MCMC) were run in each applica-

tion example in order to determine a sufficient number of chains and samples (see 
Sect. 3.7 for details). Namely, a chain with 1000 samples was run at first. Next, the 
number of samples was being gradually increased by doubling the previous num-
ber of samples until a good chain convergence was obtained. The resulting optimal 
number of samples were found to be 200 000 in the example I and 100000 in the 
example II. In both examples, multiple chains were run in order to fully explore the 
posterior distribution; 12 and 3 respectively. All model parameters were inferred 
simultaneously.

5.2. Example I - streamflow predictions

In the example I, the uncertainty of streamflow predictions was assessed with 
a particular focus on the input uncertainty described by precipitation uncertainty.

5.2.1. Results of the statistical inference

Posterior parameter distribution
The inferred posterior parameter distribution p(θI|Q) is presented in Figure 5.2. 

The marginal posterior pdfs prove that the learning process from the data content 

Fig. 5.1. Correlation between N and k for five empirical methods
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was beneficial for most parameters. Particularly, two RR parameters suggest that 
the response of the Sluzew Creek basin to the rainfall can be described by about 1.7 
reservoirs (N) with a retention time (k) of 5.2 hours (Nash’s parameters). For the 
other two RR parameters (A & Smax), the mode of the posterior, 3 km2 & 3.2 mm re-
spectively, was significantly shifted in comparison to the prior. A corresponds to the 
basin area, whereas Smax defines the maximal potential retention of the basin. Lower 
posterior values, although they may seem surprising, indicate that, first, in Sluzew 
Creek presumably only a fraction of the total basin area contributes to the surface 
runoff (A) during heavy rainfalls. Second, in regard to the natural retention of the 
basin (Smax), it does not seem to affect the surface runoff during heavy rainfalls. This 
can be justified because Smax is only significant for permeable sites; the retention of 
impermeable sites equals zero. A small value of Smax can thus be explained by the 
fact that during heavy rainfalls only the impermeable part of the basin contributes to 
the direct surface runoff, which is here modelled. This sounds reasonable for a SUB 
which is expected to have a rapid process of runoff formation (see also Sect. 2.1.2). 
The residual runoff from permeable sites is expected to be much postponed in time 
and is not explicitly modelled here.

As for the LEM parameters, much information was gained from the data be-
cause the posterior (modes: σI = 0.2 m3s-1 & τ = 920 min) is narrower and strongly 
shifted in regard to the assumed prior. The posterior parameter values should be 
interpreted as ’effective’ values for the LEM in this basin, the applied RR model and 
this application example. 

Regarding the input error model (R), interestingly, the posterior standard de-
viation of all rainfall multipliers (with a mode of σζ = 0.55) increased significantly 

Fig. 5.2. Prior (solid line) and posterior (grey polygons) parameter distributions; 
A [km2], Smax [mm], k [h], N [-] – RR parameters, σI [m3s-1] (sIM) and τ [min] – LEM parameters, 

σζ  [-] – R model parameter. Y-axes – pdfs; x-axes – parameter values

Results example: Bayesian uncertaint analysis in SUB66

monography.indd   66 2014-10-08   09:01:24



compared to the prior (0.1). This finding indicates that, first, the prior pdf underesti-
mated the input uncertainty, and second, the deviations in input uncertainty among 
all rainfall events are high (see below). This could also be caused by the model sen-
sitivity to changes in rainfall multipliers and is discussed below.

Parameters correlations
The correlations between all parameters are presented in Fig. 5.3. A significant 

correlation can be observed between two RR model parameters, k and N, which are 
the Nash’s model parameters (see Sect. 4.2.1). They describe together the rainfall-
-runoff process within the basin and therefore their strong correlation should not sur-
prise. Alternatively, one of the Nash’s parameters could have been also kept constant 
while only the second was inferred. This could be considered if computation time 
was a limiting factor.

As can be seen, the inferred posterior contain mutual influences. Thus, model simu-
lations should be always drawn from the full marginal posterior distributions. Sampling 
parameter values independently will lead usually to the overestimated uncertainty bands.

Fig. 5.3. Posterior parameters correlations in example I
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Inferred rainfall multipliers
Figure 5.4 presents posterior pdfs for all 35 inferred rainfall multipliers.
A population of the inferred multipliers can be described by a mean which is 

close to the value of 1.0 [-] and a standard deviation of 0.55 (σξ). The individual mo-
des of the estimated rainfall multipliers varied from 0.82 to 3.2 with a mode of 1.3 

for all events. This nicely shows that the intuitive prior with a mean equal to 1.0 is on 
average a reasonable assumption. However, when analyzing each event separately, 

Fig. 5.4. Prior (solid line) and posterior (grey polygons) distributions of rainfall multipliers; 
numbers label rainfall-runoff events; y-axes – pdfs; x-axes – parameter values

Fig. 5.5. Diagnostic plot of rainfall multipliers (z). left panel: posterior distribution p(z) (solid line); 
x-axis – pdf; y-axis – values of rainfall multipliers [-]; right panel: black dots – relation between poste-

rior modes of z (y-axis) and rainfall amounts observed per event (x-axis); dashed grey lines cut thre-
sholds for small (<10 mm) and large rainfall events (>30 mm). Red dashed line – posterior mean of z
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high deviations from this value were observed. For events with a higher observed 
rainfall, the accuracy of the rainfall measure was usually found to be higher than for 
those with a relatively small rainfall (Fig. 5.5). This can be well explained by two 
reasons. On the one hand, the precipitation measurement accuracy itself decreases 
significantly for small rainfalls due to the absolute equipment error. On the other 
hand, for small rainfalls the possibility that the measured rainfall is only locally 
observed and does not cover the whole basin increases. Therefore, when extrapola-
ting measured values across the entire basin, the error may be considerable. This is 
further discussed in the Discussion, Sect. 6.1.

Fulfilment of statistical assumptions
The statistical inference of obtained results is crucial for the UA because only 

if statistical assumptions are fulfilled, the computed PU in calibration and validation 
mode can be considered as meaningful. The diagnostic plot of LEM model residuals 
is presented in Fig. 5.6.

To assess the fulfillment of underlying statistical assumptions, the residuals of 
LEM are compared to the residuals of the traditional Gaussian error model. In both 
cases, residuals are computed as a difference between observed and simulated values 
corresponding to the best model prediction (mode). However, in LEM the difference 
between observed and simulated values are calculated in the transformed space; here 
after using the Box-Cox transformation.

As shown in Figure 5.6, the Gaussian assumption of i.i.d on residuals would 
have been here clearly violated because the residuals of the RR indicate a strong 
autocorrelation (bottom left panel) and a heteroscedasticity (top left). This means 

Fig. 5.6. Right panel, diagnostic plot of residuals in the LEM and, left panel, of residuals in the tradi-
tional Gaussian error model by the example of one event (No. 6) in example I.

The assumption of i.i.d. is clearly violated for residuals, middle left panel, and fulfilled for residuals 
of LEM, middle right panel. The top panels present sequences of residuals, left, and LEM residuals, 

right. A strong autocorrelation (ACF) can be observed for model residuals, bottom left.
ACF is significantly reduced for LEM residuals, bottom right
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residuals are not i.i.d., proved by middle left panel. Contrary, the assumption of 
i.i.d on residuals in the LEM is clearly better fulfilled (right middle panel) because 
innovations show strongly reduced autocorrelation (bottom right panel) and hetero-
scedasticity (top right panel), even if a slight autocorrelation still remains. This can 
be explained by structural deficits of the applied RR model which can not perfectly 
reproduce the observed variable; see Sect. 5.2.2 for further explanation.

5.2.2. Uncertainty of streamflow predictions

The predictive intervals (PIs) were computed for RR events in the validation 
mode by randomly sampling from the derived posterior with 1000 repetitions by 
means of the leave-one-out-cross-validation method (Sect. 3.4.3). This means that 
PIs for each event are the result from a model calibration without this event; 35 in-
dependent MCMC chains were generated for every calibration set of other 34 events 
and validated on the remaining one. Thus, 35 different full posterior distributions 
were computed. The resulting 95%-PIs are presented in Figure 5.7 as grey polygons. 
Solid red lines illustrate the best predictions for the mode of the posterior, whereas 
the validation data points are depicted with black dots.

The credibility of streamflow predictions was assessed accordingly to their: 
i) data coverage and ii) sharpness with respect to the observed streamflow data. It is 
worth noting that the observed streamflow records for each validated event are tre-
ated as reference (’future’) data since they were excluded from the calibration mode.

Generally, 84% of data are properly covered by the PIs for all events, 14% of 
data lie above and 2% of data below the upper and lower limits, respectively. Lower 

Fig. 5.7. 95% PI for predicted streamflows [m3s-1] in the Sluzew Creek in the validation mode. Bold 
numbers above events label rainfall events; x-axes represent time from the beginning of the rainfall 
event; y-axes – streamflow [m3s-1] and 10 minutes rainfall intensity [mm]. Dotted black line depict 
observations; red solid line – posterior mode; blue bars – observed rainfall; horizontal dashed grey 

lines are depicted in 0.5 intervals of y-axes values
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coverage is observed for events No. 2, 8, 12, 13, 19. This is most probably due to 
limitations in the RR model structure that is restricted to model events which follow 
the conventional rainfall-runoff process within the basin.

The derived PIs are on average 113% and up to 350% higher than steamflow 
peaks during rainfall-runoff events; assessed by the upper limits.

5.2.3. Contribution of the input uncertainty

The relative contribution of the input uncertainty to the total PU was assessed 
by performing two independent MC simulations. First, PIs were derived by sampling 
randomly a parameter vector while RR parameters were kept constant at their maxi-
mum probability. Thus, the predictive uncertainty bands were derived whilst igno-
ring uncertainty in RR model parameters. Second, MC simulations were performed 
without considering the input uncertainty. Each rainfall multiplier was fitted to the 
value of 1.0 and no deviations were considered. As a next step, a parameter vector 
conditioned on fixed rainfall multipliers was sampled from the posterior. From this 
the resulting uncertainty bands without considering input uncertainty were derived. 
By comparison of both PIs to the total PIs, the importance of the input uncertainty vs. 
RR model parameter uncertainty was assessed and is presented in Fig. 5.8.

In general, the corresponding PIs while considering input uncertainty were fo-
und to be higher than those with neglecting input uncertainty. The latter bands are 
up to 65% and on average 30% narrower than the total PU bands; assessed by stre-

Example I − streamflow predictions 71

Fig. 5.8. influence of the input uncertainty in the Sluzew Creek streamflow [m3s-1] predictions. Grey 
polygons describe 95% total PIs; green lines describe 95% PIs whilst ignoring the input uncertainty; 
violet lines present 95% PIs whilst accounting for the input uncertainty. Bold numbers above events 
label rainfall events; x-axes represent time from the beginning of the rainfall event; y-axes – stream-

flow [m3s-1] and 10 minutes rainfall intensity [mm]. Dotted black line depict observations; 
red solid line – posterior mode; blue bars – observed rainfall; horizontal dashed grey lines 

are depicted in 0.5 intervals of y-axes values
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amflow peaks. When parameter uncertainty is neglected the PIs become up to 25% 
and on average less than 0.1% smaller than the total PU bands. This finding would 
suggest that, first, the uncertainty due to input rainfall is more important (relatively 
40% higher) than the uncertainty due to RR model parameters for streamflow predic-
tions in Sluzew Creek. Ignoring input uncertainty would lead to narrower and thus 
presumably underestimated PI. Second, as can be noticed by comparison of both PIs, 
the LEM which lumps here model structure and measurement errors still contributes 
significantly to the total PU. This, however, is not straightforward to assess due to 
mutual correlations between parameters. For further explanation see Sect. 6.1.

The quantitative contributions of both uncertainty sources are always strongly 
case-related. Thus, the proposed UA should always be performed for new basins or 
research studies

5.2.4. Conclusions from the example I

The example I addressed the uncertainty of streamflow predictions in RR mo-
dels and the relevance of the input variable uncertainty to the total predictive uncer-
tainty (PU), vs. the RR model parameter uncertainty. Based on the results from the 
Sluzew Creek basin, the following conclusions can be drawn:
•	 The Sluzew Creek basin responds rapidly to heavy rainfalls and only a part of 

the basin contributes to the streamflow observed in the stream during heavy 
rainfalls. The PU of streamflows in Sluzew Creek is high and has on average 
value of 113% of the observed streamflow peak. The extreme uncertainty bands 
went up to a value of 350% higher than the streamflow peak. For the Sluzew 
Creek basin, the input uncertainty contribution was found to be relevant, up 
to 65% of the total PU, and higher than the RR model parameters uncertainty, 
which was up to 25%, respectively.

•	 The Bayesian approach was proved to be beneficial in assessing flood predic-
tions in SUBs because it allows one for incorporating available knowledge in 
a feasible way and for an explicit treatment of diverse uncertainty sources. An 
explicit treatment of the input uncertainty adds value to the analysis. First, it 
avoids common assumptions on insignificant input variable error. Second, one 
can directly assess the input uncertainty contribution to the total PU. The adop-
ted rainfall multipliers approach is very practical because i) it has manageable 
number of parameters to be inferred, ii) improves model fit to the data during 
the calibration mode, and iii) is feasible in making predictions.

•	 The example of Sluzew Creek shows that the Gaussian assumption of identical-
ly and independently distributed (i.i.d.) residuals does not hold for hydrological 
models because residuals are heavily autocorrelated. That can be explained by 
the memory effect of the basin and a simple hydrological model structure. In-
stead, the autoregressive continuous lumped error model, LEM, deals better 
with autocorrelated residuals by normalizing them in the transformed space. 
The fulfilment of the underlying statistical assumptions was satisfying for most 
of the analysed RR events. Thus, the LEM appears to be much more sufficient 
in explaining the RR process within the basin. Moreover, using a transforma-
tion function on variables allows for deriving more realistic uncertainty bands 
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which, as intuitively expected, are higher for higher streamflows and vice versa, 
smaller for smaller streamflows. This is reasonable since more extreme events, 
for which less information is available, are expected to be more uncertain.
Several points need, however, to be further discussed. First, the not perfect 

fulfilment of the statistical assumptions underlying the LEM, which were observed 
for some of events, rises a question of a simplified conceptual models use. Second, 
although the rainfall multipliers approach appears to be very beneficial, it is limited 
to event-based modelling because a unique multiplier for each RR event must be 
specified. Third, a high contribution of the input uncertainty points out a high varia-
bility in rainfall fields. This variability cannot be captured by the traditional sparse 
rainfall gauging network and other methods should be considered. Fourth, also high 
uncertainty on predicted streamflows concerns question of a practical value of such 
high uncertainty in water management. See further Sect. 5.5.

5.3. Example II - water level predictions

In the example II the uncertainty analysis was applied to water levels modelled 
by means of rainfall-water level model (RL). In particular, the focus of the UA was put 
on assessing the importance of the output uncertainty represented by the rating curve 
parameters. These are relatively compared with the significance of RR parameters.

5.3.1. Results of the statistical inference

Posterior parameter distribution
As in the first application example, much information has been gained from the 

data content because the marginal posterior pdfs of both (deterministic) submodels 
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Fig. 5.9. Prior (solid line) and posterior (grey polygons) parameter pdfs; RR parameters: A [km2], 
Smax [mm], k [h], N [-]; RC parameters: RC1 [-], RC2 [cm], RC3 [-]; and LEM parameters: 

σI [m3s-1] and τ [min]; y-axes – pdfs; x-axes – parameter values
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i.e. RR and RC were smaller variances than the assumed prior. However, as before, 
the direct interpretation of inferred parameter values is not straightforward because 
these includes mutual dependencies. This also complicates a direct comparison with 
results obtained for RR parameter in the example I. Although inferred RR parame-
ters were found to have slightly different values than in the previous example (Sect. 
5.2.1), generally they further confirm the previous finding that during heavy rainfalls 
only a fraction of a basin area, which is heavily urbanized, contributes to flood flows. 
The detailed posterior for RR parameters are presented in Figure 5.9.

Not surprisingly, the posterior of the RC parameters is rather similar to the 
prior elicited. This was expected because rainfall-water level data do not contain 
information on the RC submodel parameters and therefore do not provide a signifi-
cant learning process. Again, this finding emphasizes the importance of obtaining an 
informative prior distribution for the RC, as recommended in Sect. 4.3.

Finally, the learning process was beneficial for LEM parameters, similarly to 
the previous example. In both studies, however, the LEM compensates differently 

Fig. 5.10. Posterior parameters correlations in example II

Results example: Bayesian uncertaint analysis in SUB74

monography.indd   74 2014-10-08   09:01:25



for remaining errors. In the example I it lumps structure deficits of the RR and me-
asurement errors of streamflow, whereas in the example II the LEM compensates for 
structure deficits of the RL model, measurement errors of water levels and the uncer-
tainty of the input variable i.e. precipitation. Thus, the direct comparison of inferred 
LEM in the two examples is not possible.

Parameter correlations
Mutual correlations between all parameters are presented in Figure 5.10. As 

can be seen, a strong correlation between all RC parameters was observed, what is 
reasonable for such empirical (fitted) parameters. Alternatively, if computation time 
is a limiting factor, one could consider reducing the number of the RC parameters to 
be inferred by keeping some of them at fixed values. 

A visible correlation can be also noticed for two of the RR parameters, k and N, as it 
was previously observed in the example I in Sect. 5.2.1. A very strong correlation obser- 
ved between the LEM parameters is rather intuitive because both parameters compensate 
together for the structural deficits of the RL model and all other uncertainty not explicitly 
acknowledged here i.e. water level measurement and rainfall input uncertainties.

Finally, a correlation between the RR and RC parameters is apparent. Intuitively, 
this can be explained by a mutual compensation of both submodels, RC and RR. As 
a consequence, inferred parameters of both submodels include these dependencies.

Fulfilment of statistical assumptions
Figure 5.11 presents a diagnostic analysis of RL model errors at the maximum 

of the posterior distribution based on the example of one event. Following the ana-
lysis discussed by an example of application to streamflow, the assumptions of i.i.d 
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Fig. 5.11. Top panel, diagnostic plot of LEM residuals and, bottom panel, of residuals in the traditio-
nal Gaussian error model by the example of one event (No. 6) in example II. The left panels present 

sequences of residuals, bottom, and LEM residuals, top. A strong autocorrelation (ACF) can be 
observed for model residuals of Gaussian model, bottom right panel, whereas, ACF is significantly 

reduced for residuals of LEM model, top right
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residuals are much better fulfilled for the residuals of the LEM than it could have 
been achieved with the traditional Gaussian error model.

5.3.2. Uncertainty of water level predictions

In the same fashion, the 95% PIs of water levels were approximated by means 
of Monte Carlo simulation with 1000 RL model runs by randomly sampling from the 
full posterior distribution and are presented in Figure 5.12. 

The reliability of such derived PIs was assessed again by means of leave-one-
-out-cross-validation method in terms of their data coverage and sharpness. The cor-
responding coverage of the 95% PIs in validation equals 84.5% of validation data 
points, of which 14% and 1.5% lie above and below the upper and lower limits, 
respectively. The computed 95% PIs are on average 29.3% and up to 82.4% higher 
than the observed maximum values; assessed by the upper limits.

The justifiable extrapolation range for the RC is exceeded by the simulated 
water levels only for the event No. 19. This event nicely illustrates that extrapolating 
the RC beyond its justifiable range leads to unreliable predictions. The estimated PI 
are here clearly overestimated. Such a high water level as predicted by the RL model 
would most likely not occur in reality because of overland flow outside the flood 
plains. As this process cannot be modelled accurately with the applied RL, PIs are 
overestimated and this results in their poor coverage of observed data.

Thus, the computed PIs for predicted water levels are sharper than the ones 
computed for streamflows. However, because different variables are modelled, this 
finding cannot be directly interpreted.

Fig. 5.12. 95% PIs for predicted water levels [cm] (grey polygons), left y-axes, in the Sluzew Creek 
during the validation. Bold numbers above label rainfall events; x-axes represent time from the begin-
ning of the event; right y-axes – 10 minutes rainfall intensity [mm]. Dotted black line depict observa-
tions; red solid line – posterior mode; blue bars – observed rainfall; dashed grey horizontal line cuts 

a justifiable extrapolation range for the RC

Results example: Bayesian uncertaint analysis in SUB76
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5.3.3. Contribution of the rating curve uncertainty

The contribution of the RC model parameters to the total PU, Sect. 5.3.2, was 
assessed by performing two additional independent MC simulations in analogy to 
the example I when input contribution was assessed. Thus, 95% conditional PIs were 
computed, first, while keeping the RC parameters at their posterior modes, and se-
cond, inversely the RR parameters were kept at their modes. By comparison of both, 
the importance of their contributions to the total PU was addressed and is presented 
for 16 events in Figure 5.13.

The corresponding PIs were found to be almost of the same relevance for 
both RR and RC parameters, both PIs lie close to each other and to the total PU 
limits (Fig. 5.13). On average both PIs contribute only about 3% to the total PU and 
a difference in their contribution is less than 1% (mean) in the validation mode, with 
a slight dominance of the RR parameter uncertainty. This finding would suggest, 
first, that the uncertainty in RR and RC parameters leads almost to the same PIs of 
water levels in the Sluzew Creek basin at this monitored cross section. Thus, for Slu-
zew Creek keeping parameters of both submodels at their modes would presumably 
lead to similar PIs as when the full posteriors for RR and RC are explored. Second, 
uncertainties of the RC and RR parameters contribute much less to the total PU in 
water level predictions while compared to the contribution of the LEM parameters 
alone (compare with grey polygons in Fig. 5.13).
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Fig. 5.13. Relevance of RC parameter uncertainty to the total PU, grey polygons, of predicted water 
levels [cm] in the Sluzew Creek. Overlapping lines depict 95% PI with ignoring uncertainty, green, 
in RC parameters and, brown, in RR parameters and point out a similar relevance of the RC and RR 

parameter uncertainties. Other notation as in Fig. 5.12

monography.indd   77 2014-10-08   09:01:26



5.3.4. Conclusions from the CASE STUDY II

The example II addressed the predictive uncertainty (PU) in hydrological mo-
delling and in particular the uncertainty of calibration data for RR models which 
were assessed by means of the corresponding RC method. Based on the results from 
the case of Sluzew Creek, it can be concluded that:
•	 Only a part of the Sluzew Creek basin contributes to the surface runoff which 

is rapid during heavy rainfalls. This is in agreement with the findings in the 
example I. Uncertainty in water level predictions in Sluzew Creek, described 
as 95% PIs, are on average 29.3% and up to 84.3% higher than observations, 
assessed by water level peaks during the events. The contribution of the RR and 
RC parameters to the total PU was found to be almost of the same relevance in 
Sluzew Creek with a slight dominance of the RR parameters.

•	 Modelling water levels directly instead of streamflows appears to be beneficial 
because it allows one for incorporating the output uncertainty represented by 
the uncertainty in calibration data, and the RC parameters, into the modelling 
process and for assessing its contribution to the total PU.

•	 As it was already shown in the example I, the LEM significantly helps fulfil-
ling statistical assumptions on errors of hydrological models. Using the simple 
Gaussian error model instead would clearly violate the assumption on i.i.d. 
residuals. The fulfilment is, however, not always perfect.

•	 Extrapolating the RC beyond the measurement range is usually a necessity for 
flood studies because flows measured in flood conditions are rare. However, 
extrapolating RC beyond the permissible range leads to unrealistic uncertain-
ties of water level predictions which are usually overestimated. This is mostly 
due to the fact that RC, which was calibrated for streamflows within the stream 
channel, is used in the present events to compute flood flows which usually 
flow out of the stream channel onto floodplains. Thus, such flood flows are 
greatly reduced. The permissible range is, however, not necessarily equal to the 
measurement range, especially for irregular or complicated bathymetric profi-
les. Therefore, updating and validating rating curves should be crucial prior to 
modelling.

•	 The contribution of the RR and RC parameters to the total PU was found to be 
relatively small. The uncertainty of RR and RC submodels is, however, higher 
than this reflected only by their parameters uncertainty. The small contribution 
of the RR and RC parameters to the PU suggests that the largest contribution re-
mains in the structural limitations of the RL model itself, lumped into the LEM. 
This requires, however, a careful interpretation because the RL consists of both 
RR and RC submodels. Finally, the presented approach to assess the contribu-
tion of output variable uncertainty in RR modelling was shown to be very prac-
tical. However, apart from pinpointing the output uncertainty contribution, it 
does not allow for direct modelling of streamflow. Thus, it is only useful when 
water levels are of interest, see further discussion in Sect. 5.5.
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5.3.5. Lessons learnt from practical applications of uncertainty analysis

Lesson I
Results from the Sluzew Creek basin suggest that i) the contribution of the 

input uncertainty to the PU is significant (up to 65%) and about 40% higher than the 
uncertainty of RR parameters themselves (up to 25%) (example I); ii) the contribu-
tion of RR parameters and output uncertainty, represented by RC parameters, to the 
total PU is almost of the same relevance with a slight dominance of the RR parame-
ters (less than 1% difference) (example II). These findings are strongly case-related 
and require careful interpretation. Although the UA approach alone is transferable 
to other basins, the individual contributions remain always case-related. These two 
points are discussed further in Sect. 6.1.

Lesson II
The UA approach proposed in this thesis was proved to be beneficial in asses-

sing flood predictions in SUBS. An explicit treatment of diverse uncertainty sources 
adds value to the analysis because it allows one to directly assess their contribution. 
In this, the rainfall multipliers and RC approaches to assess input and output variable 
uncertainties were shown to be very practical. Also the autoregressive continuous 
lumped error model (LEM) appeared to be sufficient in explaining the rainfall-runoff 
within the basin. Main limitations arise from methodological aspects of the study 
and are further discussed in Sect. 6.2.

Lesson III
The two explored application examples nicely demonstrated benefits of imple-

menting uncertainty into hydrological model predictions. A direct confrontation of 
predictions computed, first, based on the mean value only and second, when the full 
posterior distribution is explored clearly showed that the possible risk of overflooding 
may be significantly underestimated in the first case. Several issues need, however, to 
be further discussed. Relativity high predictive uncertainties estimated in both exam-
ples intuitively rise the question of a practical value of such high uncertainty and 
a possibility of incorporating UA into decision making process. Results of the UA are 
given in terms of probabilities and these cannot be interpreted by most of the people. 
Thus, the added value of analysis may be lost if it is not properly communicated. The 
UA was tested with the use of simplified models, which are a common choice in flood 
studies in ungauged basins in Central-Eastern Europe. A relatively small contribution 
of RR and RC parameters suggests that the largest contribution remains in the struc-
tural limitations of the hydrological model itself, lumped into the LEM. This concerns 
doubts of the suitability of such simplified models used to flooding forecast. Finally, 
this also opens room for discussing the future perspectives of hydrological modelling.
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6. DISCUSSION AND OUTLOOK
6.1. Interpretation of the results

6.1.1. Uncertainty contributions in application examples

Example I
It was found that the input uncertainty significantly contributes to the PU of 

RR models in the Sluzew Creek basin representing a typical SUB. On the one hand, 
a relatively large contribution proves a high variability in rainfall fields over the enti-
re basin. Even if on average the observed rainfall at the rain gauges may be conside-
red as representative for the SUB area, the variability observed in individual rainfall 
events was high. This variability is difficult to capture only by means of a sparse 
punctual gaining network (McMillan et al. 2011) and thus different methods should 
be sought (see further Sect. 6.3). On the other hand, rainfall multipliers ultimately 
increase the flexibility of the hydrological RR model and hence partly compensate 
for its structural deficits (Sikorska et al. 2012a). An increased number of calibrated 
parameters allows for a better model fit to the observed data. Thus, a relatively high 
contribution of the input uncertainty is likely also caused by mutual compensations 
of input error model and error model of RR structure deficits. This error is lumped 
together with the measurement error of streamflow into a LEM. It is further assumed 
that the measurement uncertainty of streamflow is much smaller than the model 
structure error itself and thus the LEM is dominated by the uncertainty in the model 
structure. However, this uncertainty cannot be decomposed from the LEM.

Example II 
The parameter uncertainties of both the RR and RC submodels were found to 

be almost of the same relevance and much smaller than the remaining error repre-
sented by the LEM. The LEM lumps here model structure deficits of the RR and RC 
submodels, measurement errors of water levels and input uncertainty of precipita-
tion. This relatively small contribution of RR and RC parameters to the total PU has 
two main reasons. On the one hand, all model parameters (RR and RC) can be defi-
ned precisely if the available recorded input-output data contain enough information. 
Thus, the parameter uncertainty may be reduced with more data. On the other hand, 
a simplified hydrological model applied here presumably produces a high systematic 
error in predictions. This error cannot be reduced with recorded input-output data 
because the model structure remains the same. Hence this error likely dominates 
beyond other uncertainty sources (Sikorska et al. 2013).

6.1.2. Generalization of example findings

The developed UA approach is general and can be applied to other studies. In 
contrast, the quantitative contributions of individual uncertainty sources found in 
this study cannot be directly transferred to other studies. Because of specific model 
structures, basin properties, available data and modeller’s/expert’s knowledge, the 
results of quantitative analysis always remain case related. Thus, to pinpoint indi-
vidual uncertainty contributions for another study, the entire UA must be implicitly 
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performed for each research study. It is worth noting that quantitative results contain 
a subjective element due to the need to specify the prior on model parameters. Usu-
ally, this subjectivity will be mitigated by the data during the Bayesian inference as 
long as the specified prior allows for that; i.e. the prior assumed probability is not 
equal to zero for values for which there is evidence in data.

Another thing is that the results obtained for RR are based only on a short ob-
servation period, 3 years for RR. Thus, they can be strongly influenced by temporal 
conditions. Hence they do not allow for analysis of long term changes within the 
basin. For long-term analysis, more records should be gathered.

Although the merit of conceptual hydrological models lies in their conceptual 
parameters, which may be linked to basin properties and thus transferred to other 
studies without the need for direct model calibration. Because within the developed 
UA model parameters are described as a entire probability distribution and not as an 
individual parameters, they cannot be totally separated. This is due to the fact that 
inferred parameters include mutual dependencies and therefore lose some degree of 
their conceptual interpretation during the inference. Thus, they should be interpreted 
in term of the entire probability and only as the probability transfer to the other ba-
sins, e.g. as a prior, as also suggested by McIntyre et al. (2002).

6.2. Methodological aspects of the study and their limitations

The UA method developed within this work allows for assessing the impor-
tance of individual error sources. However, within this approach many decisions 
were made which need to be discussed in more detail. This includes in particular: 
i) using Bayesian inference for UA; ii) using rainfall multipliers; iii) rating curve 
(RC) uncertainty; iv) rainfall-water level (RL) model; v) lumped error model (LEM) 
and vi) strategies for uncertainty reduction.

6.2.1. Using Bayesian inference for uncertainty analysis

Bayesian inference was demonstrated to be very beneficial in assessing uncer-
tainties of flood forecasting in SUBs. The great advantage of Bayesian inference lies 
in the direct interpretation of the PU, which truly represents the probability of model 
predictions. In the same manner, the best model prediction is the most probable 
estimate. Bayesian inference also allows one to easily incorporate prior knowledge 
into model parameters from various sources, such as experts’ knowledge or previous 
studies. This is especially relevant for SUBs where typically no long-term recorded 
input-output data are available which would allow for a classical model calibration 
(Sikorska et al. 2012a). In addition, Bayesian inference has no high data require-
ments. Thus, already basic basin data enable a probabilistic statement on possible 
model estimates. Finally, Bayesian statistics allows for an explicit treatment of di-
verse uncertainty sources as input variables, model structure, parameters and output 
variables. This adds value to the analysis because it pinpoints important directions 
of further investigation in order to i) improve the accuracy of model predictions, and 
ii) reduce associated uncertainties (if reducible) (Sikorska et al. 2012a, 2013). In this 
way one can assess if e.g. more effort should be put into gathering more calibration 
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data for the selected hydrological model or whether another hydrological model sho-
uld be chosen. The main limitation arises from the need to formally describe errors 
of a hydrological model and consequently to formulate the likelihood function.

6.2.2. Using rainfall multipliers

To account for the uncertainty in input rainfall, the rainfall multiplier appro-
ach was adopted (example I). This approach was demonstrated to be very feasible 
in making predictions. However, it is limited to event-based modeling because an 
individual multiplier must be inferred for each RR event. Moreover, the approach 
fails if rainfall occurred but was not observed because a multiplier multiplied by 
a null value always yields null. As already pointed out in Sect. 6.1, using rainfall mul-
tipliers increases model flexibility to reproduce observed input-output data. Thus, on 
the one hand, inferred rainfall multipliers will reflect this dependency. Consequently, 
inferred rainfalls should be treated as inferred rather than real (Seibert, Beven 2009; 
Sikorska et al. 2012a). On the other hand, uninformative prior on input uncertainty 
would presumably lead to overestimating its contribution and therefore should be 
avoided (Renard et al. 2010, 2011). The approach of rainfall multipliers could also 
be extended to account for uncertainty in other variables as e.g. streamflow. This, ho-
wever, is not straightforward to implement because streamflow cannot meaningfully 
be divided into events. Thus, further research is required in this regard.

6.2.3. Rating curve (RC) uncertainty

The relevance of output uncertainty for RR models was assessed by quantifying 
the uncertainty in RC parameters (example II). The uncertainty of the RC submodel 
itself cannot, however, be assessed because the structure error of the RC is insepara-
bly lumped into the LEM. To quantify the total uncertainty of the RC submodel, its 
structural error needs to be decomposed from the LEM and explicitly acknowledged. 
To this end, further research would be required.

6.2.4. Rainfall-water level (RL) model

Incorporating RC into the RL model allows one to assess the contribution of 
calibration data uncertainty for RR models (example II). However, it does not al-
low for direct modelling of streamflow, which is an internal state of the RL model. 
Thus, only water level can be modelled. To estimate streamflow, water level must be 
converted through the RC along with the accompanying uncertainty. Alternatively, 
streamflow could be modelled directly. This would require an explicit treatment of 
the RC submodel.

6.2.5. Lumped error model (LEM)

Bayesian inference requires an explicit treatment of hydrological model errors. 
To this end, a LEM was applied to lump together all uncertainty sources not expli-
citly acknowledged. Thus, the LEM lumps different errors in the two application 
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examples and consequently specific findings from those two studies cannot be quan-
titatively compared.

In both examples, the LEM proved to be sufficient in explaining the rainfall-
-runoff processes with the basin because it accounts for the correlation apparent 
between errors of hydrological model predictions. Thus, it appears to be a promising 
alternative to the commonly applied classical Gaussian independent error model.

6.2.6. Strategies for the predictive uncertainty reduction

The developed uncertainty analysis allows pinpointing the importance of indi-
vidual error sources. This information is relevant for planning strategies of uncerta-
inty reduction. In this regard, a few recommendations can be given. 

Model parameter uncertainty can be gradually reduced by gathering more me-
asured input-output data and using more precise information to elicit prior i.e. more 
accurate maps or remote sensing data. The reduction of the PU is, however, limited due 
to other source contributors, and after reaching a certain point not noticeable any more.

Input rainfall uncertainty may be reduced with more precise rainfall informa-
tion. One could greatly benefit with a denser network of rain gauges, weather radar 
or retrieving data from telecommunication networks such as microwave links (Fencl 
et al. 2012; Bianchi et al. 2013). A denser rain-gauge network typically has some 
costs attached to it, such as equipment purchase and maintenance. In contrast, using 
radio links, one may benefit from already existing infrastructure over all continents 
and a high resolution of links (locations). Thus, no additional costs for equipment 
have to be borne.

Output uncertainty of RR models could be reduced with more precise infor-
mation on a RC used to derive calibration data for RR models. This may be espe-
cially significant for poorly gauged cross sections with only a few measured water 
level-streamflow records available or for dynamic basins where cross sections si-
gnificantly change seasonally or with changing land use. Uncertainties on already 
existing RCs could be reduced by incorporating remote sensing data from satellites 
(Di Baldassarre, Uhlenbrook 2012). Finally, it is crucial to update RCs frequently 
and to successively extend their measurement range to also cover flood conditions 
(Domeneghetti et al. 2012).

Alternatively, one could consider improving the structure of a hydrological mo-
del. This will reduce systematic errors observed in predictions; structure model error. 
In general, this is tied to the availability of input and output data, and their content, 
to calibrate parameters of the improved model. If data do not contain enough infor-
mation to infer all model parameters, the parameter uncertainty will increase more 
than the uncertainty of model structure decreases.

6.3. Outlook
6.3.1. Practical value of the predictive uncertainty

Quantification of the predictive uncertainty in hydrological modelling is rele-
vant for many studies, such as flood hazard analysis, water management, mitigation 
strategies or urban development analysis (Montanari 2007; Efstratiadis, Koutsoyian-
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nis 2010; Ramos et al. 2010). For instance, UA could be useful to evaluate whether 
a bridge, floodplain or city will be overflooded during the forecast rainfall event and 
with which probability. For water quality analysis not only temporal but rather long-
-lasting conditions are important. This is due to the fact that many aquatic species 
may endure a relatively high dose of pollution if it is only temporary but will extinct 
with a smaller long-lasting dose. In this, uncertainty on water quality estimates may 
support water quality management by formally (probabilistically) comparing diverse 
strategies for water quality improvement and their impacts on receiving waters. 

UA quantifies the model PU under current conditions e.g. the current knowled-
ge on the future or current state. This knowledge may be (very) uncertain and this 
will be reflected by large uncertainties. This may lead to concerns of usefulness of 
such large uncertainties. Intuitively, uncertainty of predictions referring to unknown 
conditions cannot be expected to be small. Thus, PU of 100% of high flows and 
1000% for low flows are not uncommon and have been reported [Blöschl, Montanari 
2010]. In this, uncertain information, even if not preferable, is always more useful 
than a false certainty which may pose catastrophic consequences (Di Baldassarre et 
al. 2013). For instance, if one is not aware of the possible risks, prevention or miti-
gation strategies cannot be even considered.

6.3.2. Incorporating UA into decision making process

A decision making process weighs different options by social preferences. 
In this, UA of hydrological predictions can support the decision making process in 
three ways (Reichert 2012). First, UA integrates scientists’ knowledge of (un)certainty 
and possible risks and social responsibility of predictions. Providing decision makers 
with information on PU is the basis for risk evaluation and may lead to other decisions 
than without consideration of uncertainty. Second, interpreting model outputs in terms 
of a random variable instead of certain single values allows for a better analysis and 
comparison of diverse scenarios by means of diverse criteria that are not only limited 
to a flat interpretation. Third, probabilistic quantification of PU allows one to hierar-
chically order different scenarios by diverse goals and socio-economic circumstances 
and in accordance with uncertainty levels, e.g. risks of dam breaks or levees overflo-
wing for different strategies considered. This is especially important for urbanized 
sites, where the socio-economic consequences of even moderate potential fl ooding 
can be severe (Aronica et al. 2013). Lastly, there is an increasing need for a better link 
between science and practice in the discipline of hydrology so that UA does not only 
remain the scientists’ issue but becomes a routine procedure in water management. 
This is already standard in ecological, medical and general risk analysis.

6.3.3. Communicating the uncertainties

Interpreting model outcomes in term of probability distributions instead of sin-
gle outcomes may pose a problem, especially for decision makers who are usually 
not statistically trained. In a classical (deterministic) approach a model provides only 
a single prediction, which is much easier to understand for most people. For instan-
ce, the bridge will be flooded or not and the predicted flood flow can be ’exactly’ es-
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timated. This information may, however, lead to overconfidence because a possible 
risk is underestimated, as shown in this thesis. Because many people feel uncomfor-
table with a probabilistic statement (Todini 2007), it has become common practice 
to communicate probabilities in terms of frequencies. For instance, one could com-
municate a possible flood risk in two ways; first, as an annual exceeding probability 
of 1%, and second, as a flood flow which occurs once per 100 years on average. The 
first information is hardly understandable for many people. The second information 
can be more easily understood but may lead to false confidence. A person may inter-
pret it as follows; if the flood with a return period of 100 years already occurred in 
his life, it will definitely not occur again. However, an occurrence of 1%-flood flows 
is theoretically possible every year. This is not understandable by people without 
a statistical or mathematical background. The information on a possible risk, even if 
complete, becomes useless if it cannot be interpreted or understood. Consequently, 
more effort should be put in a communication of uncertainties to decision makers.

6.3.4. Hydrological modelling in Central-Eastern Europe

Hydrological modelling in Central-Eastern Europe, e.g. Poland, is especially 
difficult because conditions of basins located in this part of Europe are expected 
to rapidly change in the future due to foreseen urban growth (EEA 2006). Thus, 
not only climate but also social changes must be forecast, and these are difficult to 
accurately predict. Consequently, hydrological models with parameters calibrated to 
current conditions will most likely not well predict the basin response under chan-
ged conditions. Thus, the benefit of using complex models with numerous fi tted 
parameters may be lost (Blöschl, Montanari 2010). In addition, due to economic 
costs and practical problems, it is usually not possible to fully cover all basins be-
ing at flood risk with a proper monitoring program; e.g. continuous measurements 
of rainfall, streamflow and water level. Especially SUBs remain ungauged due to 
a relatively low flood risk, which is understood as a compromise between costs put 
into flood prevention and possible damages in case of flooding. To assess flood risk 
and associated water quality problems under the changing environment of a basin, 
flexible models which can be easily adjusted to new conditions are therefore sought. 
For this reason, simple conceptual models, despite their limitations, are justified be-
cause it is straightforward to derive their parameters and predictions for different fu-
ture scenarios i.e. under changing conditions of a basin (climate and social). The ad-
vantage of such models over structurally more complex models is a limited number 
of conceptual model parameters which can be inferred independently from recorded 
data (see above Sect. 6.1). Hence, classical model calibration can be avoided. Next, 
due to their reduced complexity, such models capture only the most important pro-
cesses involved in the RR process being modelled. Thus, the RR process is usually 
reduced to model only direct streamflow without considering other components of 
water balance such as ewapotranspiration or groundwater flow. Finally, such models 
are not data demanding. Short series of recorded input-output data gathered under 
current conditions are usually enough to improve predictions of such models and 
reduce their uncertainty due to model parameters.
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6.3.5. Applicability of simplified models to flooding forecast

The proposed UA approach was tested on conceptual models with a reduced 
complexity. As shown by results from the examples, such simpler models can satis-
factorily predict flood events. Thus, they are useful for flood predictions in poorly 
gauged basins with only a few recorded input-output data available or when asses-
sing effects of future changing conditions (climate or social). However, all models 
are limited in predicting extreme conditions where unforeseen interactions occur, i.e. 
external processes that are not included in the model structure (Sikorska et al. 2013). 
If a model is flexible enough, its parameters may be adjusted during the calibration to 
fit observed patterns. In contrast, if a model has a reduced complexity and flexibility, 
it may not be possible to match the calibration data. Usually, this also results in large 
PU bands that are dominated by structural limitations of hydrological models, which 
cause large systematic errors in predictions, see Sect. 6.1. This may raise concerns 
regarding the practical applications of these types of models. This uncertainty is not 
reducible with more recorded data because the model structure remains the same. 
If this is a crucial point, one should consider different models with a more complex 
structure. However, even if more details are included into the model structure, usu-
ally it is not possible to reduce all PU. Some uncertainty always remains due to the 
variability of the basin being modelled (Aronica et al. 2013). Interestingly, more 
complex models may not necessarily provide smaller uncertainties because the para-
meter uncertainty increases.

6.3.6. Perspectives of hydrological modelling

In the future, hydrological modelling is foreseen to further develop in three 
main directions: i) improving hydrological predictions under changing conditions; 
ii) improving real-time forecasting; iii) extending available data and extracting their 
content. This work covers the first issue only.

Hydrological modelling under changing conditions (climate and social) of the 
basin should adapt to these conditions and therefore cannot be considered stationary 
(Montanari et al. 2013). Thus, there is a need to move from deterministic model-
ling towards stochastic modelling. This can be achieved by including an uncertainty 
element in predictions of already available deterministic models. In this, to provide 
more accurate information on possible system states, new methods should be sear-
ched for to improve model structure, model predictions and reduce their uncertain-
ties. Alternatively, hydrological modelling may profit from developing stochastic 
models which describe the basin process as a stochastic process. Such models rely 
on statistical information and thus may better imitate stochastic patterns of the origi-
nal system. These models still require formulation of predictive uncertainty compo-
nents, as input, parameters or output.

In terms of assessing the risk arising from current hydrological conditions e.g. of 
flooding, further development of real-time forecasting is required. Model predictions 
in real time can usually benefit from less uncertain information because it is easier to 
accurately predict a system state in e.g. one hour or one day than in one or ten years. 
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However, some uncertainty is always present. To assess this uncertainty, real-time fo-
recasting requires flexible models and UA techniques, whose parameters can be easi-
ly adjusted due to changed conditions (Romanowicz, Beven 1998). Some techniques 
are currently available, e.g. Kalman filter or particle filter, in which the uncertainty 
in state variables is propagated through time so that the model’s estimates are conti-
nuously updated with the observed information (Kalman 1960). This is conceptually 
similar to Bayesian updating (e.g. Chen 2003). To be efficient in practice, estimates 
from real-time forecasting should ideally reach an interested group in as short time 
as possible. In this, the early warning system could greatly benefit from virtual social 
groups, which are becoming more and more popular (e.g. facebook, twitter). Nowa-
days mobile phones with internet access (’smart phones’) are becoming a standard 
device in citizens’ everyday lives. Thus, warning information on flood risk spread via 
social networks can potentially reach recipients faster than e.g. radio or television.

Finally, the problem with the available data still remains unresolved. In this, 
the increasing importance of open access to information should be used to a greater 
extent. Fast developing new techniques and technologies in engineering and moni-
toring can support hydrological modelling by providing more data and of a better 
accuracy e.g. GIS data, remote sensing and with a better resolution (Chormański et 
al. 2011; Schumann et al. 2009). Attention should also be paid to extracting more 
information from already existing data. Important information on previous states of 
the basin, stream or flood flows or long-term changes can be gained from potential-
ly unrelated disciplines, such as e.g. historical information from reports, pictures, 
newspapers. Also the rapidly increasing popularity of social networks (e.g. face- 
book, twitter) could open new possibilities to obtain meteorological and hydrologi-
cal. With no additional monetary costs much can be gained from e.g. flood observer 
groups, which can provide detailed and accurate information on current hydrological 
states around the world such as water levels, which in turn can be utilized in flood 
hazard analysis or to calibrate models a posteriori.

7. FINAL CONCLUSIONS AND RECOMMENDATIONS
7.1. Final conlusions

Many research questions were raised in the introduction. Several of those could 
be answered but some are still open and need further investigation.
1.	 The uncertainty analysis (UA) developed has been demonstrated to be a feasi-

ble method to assess the predictive uncertainty of rainfall-runoff (RR) models 
in small urbanized basins (SUBs). The UA is based on the Bayesian inference. 
The UA provides uncertainty bands that have a probabilistic interpretation. Mo-
reover, it allows one to pinpoint the relevance of individual sources contribu-
ting to the total predictive uncertainty (PU). The approach is broadly applicable 
to studies in other basins and with other hydrological models. The main limi-
tations arise from the need to formally describe errors of a hydrological model 
and consequently to formulate the likelihood function.

2.	 Errors of a hydrological model have been shown to be heavily autocorrelated. 
This correlation cannot be represented by a classical independent Gaussian error 
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model, which has been typically applied in hydrological modelling. In this regard, 
the autoregressive lumped error model has proven to be a promising alternative.

3.	 The input rainfall uncertainty has been demonstrated to be strongly time-depen-
dent. To capture this variability, an approach with time dependent parameters 
is needed. In this work, the adopted rainfall multipliers approach has been de-
monstrated to be practical in describing errors of input rainfall to RR models.

4.	 The output uncertainty of RR models, which is streamflow, has been explo-
red by the parameter uncertainty of the corresponding rating curve (RC). This 
approach has been demonstrated to be useful to assess the contribution of the 
output streamflow uncertainty. However, it does not allow for direct modelling 
of streamflow.

5.	 The practical value of quantifying prediction uncertainties lies in supporting 
water management through providing decision makers with a broader basis for 
scenarios and strategies analysis. In addition, quantifying individual uncertain-
ty source contributions allows one to plan strategies for reducing the predictive 
uncertainty. Reduction of the predictive uncertainty is generally limited due to 
the model structure and availability and information content of input-output 
data to infer model parameters. Incorporating UA into practical applications re-
mains, however, a challenging task. Most of all, this is because many people are 
not statistically trained to interpret and understand the output information from 
UA. More efforts in teaching decision makers and lay people on how to handle 
and understand this additional dimension of information would be desirable.

6.	 To predict the consequences of future (climate or social) changes, one has to rely 
on models in which parameters can be easily adjusted. Unfortunately, complex 
models usually require calibration against observed input-output data in order to 
provide reliable predictions. This cannot be achieved for future unknown con-
ditions. Models with a simplified structure therefore remain an attractive option 
because they can provide predictions based only on short-term data. Their pre-
dictions, however, are usually connected with high predictive uncertainty.

7.	 Simplified models also often remain the only feasible tool to provide hydrolo-
gical predictions in Central-Eastern Europe. Because this part of Europe is at 
high risk of future social changes such as urban growth, it is difficult to foresee 
future basin conditions. Moreover, the existing monitoring programs do not 
cover all basins at risk of flooding or water quality problems and is usually li-
mited to infrequent measurements only. All this makes hydrological modelling 
in Central-Eastern Europe especially challenging.

8.	 The uncertainty of RR predictions in Sluzew Creek has been found to be large 
and dominated by hydrological model structure uncertainty and input variable 
uncertainty (rainfall). The first source cannot be effectively reduced by gathe-
ring more input-output data if the model structure remains untouched. If it is 
a critical point, the hydrological model should be improved. Alternatively, in-
put rainfall uncertainty could be reduced with more accurate information on 
observed rainfalls. Output and parameter uncertainties were demonstrated to be 
less important in this basin.
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7.2. Recommendations for future research

In the course of this work, several simplifications and assumptions were made 
and some issues were neglected. These issues require further research.
•	 Structure errors of hydrological models have been suggested to be an important 

source of the total predictive uncertainty of simplified models. However, its 
direct quantification was not possible. Thus, further research should aim at an 
explicit treatment of this error and its decomposition from other uncertainty so-
urces. A promising approach to formally describe model bias (model structure 
error and input error) has been recently tested (Del Giudice 2013; Honti et al. 
2013). This will require an explicit treatment of all uncertainty sources.

•	 Also the high contribution of the input uncertainty in RR modeling needs fur-
ther investigation. In this regard, it would be interesting to investigate how 
much the input rainfall uncertainty can be reduced with more precise rainfall 
information such as from radio link networks or radar data. In particular, one 
could explore how the rainfall information from radio links can reduce the total 
predictive uncertainty of RR predictions in Sluzew Creek. Within this approach 
observed rainfall is computed from the information on radio links attenuation 
due to rainfall drops impact. To extract rainfall information from radio link ne-
tworks, a promising technique has been already developed and is being tested 
(Bianchi et al. 2013).

•	 The small contribution of the output uncertainty represented by the RC para-
meters in the total predictive uncertainty for RR models also requires further 
research. The relevance of the entire RC method uncertainty in the RR model 
predictions uncertainty could be especially interesting for further investigation. 
A promising approach to quantify the RC method uncertainty has been develo-
ped (Claps, Di Baldassarre 2011). To include this uncertainty in hydrological 
model predictions, further investigation is needed.
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Summary
Analiza niepewności prognozy wezbrań opadowych w małej zlewni zurbanizowanej: 

W celu oceny wpływu zmieniających sie warunków zlewni na ryzyko powodziowe i jakość 
wody oraz opracowania strategii łagodzących, planiści i decydenci potrzebują prognoz mode-
li hydrologicznych. Prognozy te obarczone są zwykle istotną niepewnością o różnym źródle. 
W ramach tej pracy opracowano kompletną Bayesowską metodykę do analizy niepewności 
w modelowaniu wezbrań opadowych w małych zlewniach zurbanizowanych. Metodyka ta 
jest niezależna od charakterystyk zlewni badawczej i modeli hydrologicznych. Oryginalno-
ścią pracy jest połączenie innowacyjnych metod do opisania niepewności wejścia, parame-
trów modelu, struktury modelu i wyjścia modelu. Przydatność analizy niepewności wykaza-
no za pomocą dwóch praktycznych badań, w których modelowano natężenie przepływu oraz 
stan wody, i zweryfikowano na zlewni Potoku Służewieckiego w Warszawie. Wyniki analizy 
pokazały, iż niepewność predykcji w tej zlewni jest duża i zdominowana przez niepewność 
wejścia i struktury modelu. Głównymi ograniczeniami metody jest konieczność formalnego 
opisania błędów struktury modelu oraz sformułowanie funkcji wiarygodności niezbędnej do 
przeprowadzenia Bayesowskiej analizy niepewności.
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Glossary of abbreviations
B 	 model Bias (model structure and input uncertainty) 
E 	 model errors (model structure, input and measurements uncertainty) 
ε 	 measurements (output) uncertainty 
Em 	 model errors without input uncertainty (model structure and measurements uncertainty)
EP 	 effective precipitation 
g	 forward transformation
g-1	 backward transformation
i.i.d. 	 identically and independently distributed (errors)
l 	 predicted deterministic water level 
L	 predicted stochastic water level
LEM 	 lumped error model 
Lo 	 observed water level 
LR−1 	 inverse of water level-runoff (model) 
M 	 deterministic hydrological model 
q 	 predicted deterministic streamflow 
Q	 predicted stochastic streamflow 
Qo 	 observed streamflow 
p 	 probability distribution 
P 	 probability
P 	 precipitation 
pdf	 probability density function 
Po 	 observed input precipitation posterior posterior probability distribution
prior 	 prior probability distribution 
PU 	 predictive uncertainty 
Px 	 transformed observed input precipitation 
R 	 input rainfall error (model) 
RC 	 rating curve (model) 
RL 	 rainfall-water level (model) 
RR 	 rainfall-runoff (model) 
SUB 	 small urbanized basin 
θ 	 model parameters
UA 	 uncertainty analysis 
X 	 model input variable 
Xo 	 observed model input variable 
Xx 	 transformed observed model input variable 
y 	 predicted deterministic model output 
Y 	 stochastic model output variable 
Yo 	 observed model output
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