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1. INTRODUCTION
1.1. Overview of the problem

Present	cities	 suffer	more	and	more	 frequently	 from	flooding	and	associated	
water qualitative problems due to climate and social changes (e.g. Rosso, Rulli 2002; 
Ott,	Uhlenbrook	2004;	Shepherd	2005;	Schaefli	et	al.	2011).	Thus,	flooding	is	regar-
ded nowadays as the most damaging natural hazard (Ohl, Tapsell 2000; Opperman 
et al. 2009). 

Climate	 changes	 relevant	 for	 hydrological	 processes	 are	 generally	 identified	
with changes in air temperature and precipitation (volume and intensity) (Blöschl, 
Montanari	2010).	Social	changes	are	identified	with	the	globally	observed	develop-
ment	of	cities	(urbanization)	and	a	human	trend	towards	living	in	floodplains;	areas	
periodically	 inundated	by	 river	overflows	(Junk	et	al.	1989).	Results	are	 land-use	
changes such as deforestation, civil constructions, landscape replacements i.e. sub-
stituting	natural	and	semi-natural	(permeable)	surfaces	with	artificial	(impermeable)	
ones.	As	a	consequence	of	land-scapes	modifications,	frequent	but	moderate	flooding	
of	previously	rural	areas	is	avoided,	and	rare	but	catastrophic	flooding	of	currently	
urbanized or industrialized areas is exacerbated (Werner, McNamara 2007). Also, 
land-use changes are usually followed by decreasing chemical and ecological water 
quality resulting from wash-off of polluted surfaces during rainfall events (Obropta, 
Kardos 2007; Dietz, Clausen 2008). Most of pollutants introduced into water with 
stormwater are associated with sediment particles (Horowitz, Stephens 2008). 

As	a	consequence	of	changing	conditions	(climate	and	social),	flood	risk	and	
associated water quality problems are dramatically increasing in many parts of the 
world (Milly et al. 2002; Rosso, Rulli 2002; Di Baldassarre et al. 2010). Especial-
ly Central-Eastern Europe is exposed to a high risk of future urban development 

M O N O G R A F I E  K O M I T E T U  G O S P O D A R K I  W O D N E J  PA N
z. 37 2014
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(UNFPA 2007), due to European Union (EU) enlargement and its economic and 
social	consequences.	Because	the	consequences	of	potential	flooding	pose	a	greater	
threat to population and infrastructure in urbanized than in rural areas (Yang et al. 
2010), urbanized areas are also of a higher concern in the hydrological community.

To assess the effects of changing basin conditions and propose mitigation stra-
tegies, urban planners and decision makers have to rely on hydrological model pre-
dictions from a design storm, long-term precipitation records or climate scenarios. 
This is not a trivial task. Most of all, because a hydrological model represents only 
a	simplification	of	a	real	basin	(Ratto	et	al.	2007).	Due	to	its	restricted	structure	tied	
up with its parameters, its ability to model the observed process, e.g. rainfall-runoff 
(RR), is limited. A calibration of model parameters with observed input-output data 
usually improves model predictions, resulting in model parameters which better re-
produce the observed patterns. Unfortunately, hydrological and meteorological ob-
servations and basin data are not generally available (Sivapalan 2003). This results 
in problems with model calibration and with providing reliable predictions. Thus, 
hydrological models suffer from i) input uncertainty, ii) structural limitations, iii) 
parameter uncertainty, and iv) output uncertainty (Sikorska et al. 2013).

In this regard, modelling in small urbanized basins, SUBs, is especially 
difficult.	Hereafter,	SUBs	are	defined	as	basins	in	which	the	ratio	of	urban	sites	has	
been	 significantly	 increased	over	 time.	The	difficulties	of	hydrological	modelling	
in	SUBs	have	two	main	reasons.	First,	the	influence	of	possible	future	climate	and	
social changes on hydrological conditions in SUBs are hardly predictable due to 
a	very	small	contributing	area.	And	second,	sufficient	observed	data	are	usually	not	
available for SUBs (Sikorska et al. 2012a). In addition, because of a small contribu-
ting area and a very fast basin response to rainfall, frequent data records are required, 
which would be too costly to be implemented in the SUBs.

Consequently, rational urban water management should ideally consider not 
only the most probable prediction in terms of classical (deterministic) modelling but 
also the associated uncertainties (Krzysztofowicz 1983; Murphy 1991; Krzysztofo-
wicz 1999). Although providing exclusively qualitative information on prediction 
uncertainty (certain? / uncertain?) may take the possible risk into consideration, it 
cannot be practically introduced into water management. To this end, uncertainty 
of	model	 predictions	must	 be	 quantified	 (how	much	uncertain?).	To	 this	 end,	 di-
verse uncertainty sources need to be formally (implicitly or explicitly) described. 
A formal description of the model structure errors is the most challenging because 
errors of hydrological models are usually strongly autocorrelated (e.g. Romanowicz 
et al. 1994; Kuczera et al. 2006; Sikorska et al. 2012a, b). This can be explained 
by the memory effect of the basin. Thus, the classical Gaussian model error, with 
identically (normally) and independently distributed (i.i.d.) errors, does not hold for 
hydrological models. A promising alternative was recently proposed by Yang et al. 
(2007, 2008), who investigated the autoregressive lumped error model to lump di-
verse uncertainty sources into a single error term. This error model accounts for the 
correlation apparent between hydrological model errors. Yet, this error model has 
not been widely recognized so far, especially in application to SUBs. In a similar 
fashion, the Gaussian model error does not hold for errors of the input variable, 
which usually is the rainfall for RR models. Such errors are usually time-dependent, 

Introduction10

monography.indd   10 2014-10-08   09:01:14



which	can	be	explained	by	the	variability	in	the	intensity	of	rainfall	fields,	changing	
between the rainfall events. To capture this diversity in the input variable, it must be 
described by time-dependent parameters. Recently, a promising approach of rainfall 
multipliers has been proposed by Kavetski et al. (2006a, b) but has not been com-
monly applied in hydrology until now, especially in the SUBs. Furthermore, it is not 
clear	how	 to	 formally	describe	errors	 in	 the	output	variable,	 typically	 streamflow	
for RR models, and more importantly how to include these errors into hydrological 
model predictions. 

Given aforementioned considerations, a feasible method to formally acknow-
ledge diverse sources of the predictive uncertainty (PU) in hydrological modelling 
and to quantify the aggregated total PU is needed. 

This work provides a formal approach for uncertainty analysis (UA) of rainfall-
-runoff (RR) predictions, particularly in small urbanized basins (SUBs). The term 
’formality’ implies that the computed uncertainty should be statistically correct, 
probabilistically interpretable and yet practically feasible. The proposed uncertainty 
analysis (UA) approach relies on Bayesian statistics as it proved to be conceptually 
more satisfactory than other uncertainty analysis approaches. To account for uncer-
tainty in RR modelling, a basin’s RR process is modelled as a stochastic process, 
which may evolve in many directions. To include the uncertainty in the model pre-
dictions, a traditional deterministic hydrological model, giving a single output, is 
combined with an error term. The proposed UA is innovative in two ways. First, it 
allows one to formally quantify the predictive uncertainty (PU) of RR by applying 
the state of-art Bayesian inference combined with the autoregressive error model to 
capture	errors	of	model	structural	deficits.	Second,	it	allows	one	to	relatively	assess	
the contribution of four main acknowledged uncertainty sources. This was not done 
before for SUBs. 

The	main	 concern	 is	 given	 to	 rainfall-driven	 floods	 induced	 by	 stormwater	
(SW)	runoffs.	Thus,	quantitative	variables	such	as	streamflow	and	water	level	are	of	
interest	because	these	are	most	relevant	for	flood	risk	studies.

The PU of RR predictions is investigated by means of two practical case stu-
dies, in which the usefulness of UA is demonstrated in its application to: 
1. streamflow	prediction	(1	variable,	1	model),	
2. water level prediction (1 variable, 2 submodels).

The UA approach is tested on chosen hydrological models in a small experi-
mental basin in Warsaw, Sluzew Creek, Poland. Because the Sluzew Creek basin, 
like a typical SUB, is not covered with a continuous monitoring program, an experi-
mental	campaign	has	been	performed	in	order	to	obtain	sufficient	data	for	the	desired	
analysis. 

Although the UA approach was applied to SUB, it is independent from the 
experimental basin and the hydrological models. Therefore predictions within diverse 
models on basins with diverse land-use types can also be evaluated. Moreover, the 
approach is independent from analyzed hydrological characteristics and may be also 
applied to model water quality parameters.

Overview of the problem 11
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1.2. Research questions

1. How can the total predictive uncertainty (PU) of RR predictions in SUBs be 
practically	quantified?

2. How can autocorrelated errors of hydrological models be practically and for-
mally acknowledged to provide reliable uncertainty predictions? Is the auto-
regressive	lumped	error	model	sufficient	 in	describing	errors	of	hydrological	
models for SUBs?

3. Is	 a	 rainfall	 multipliers	 approach	with	 time-dependent	 parameters	 sufficient	
enough to capture and describe the variability in precipitation, as an input into 
RR models for SUBs?

4. How can output uncertainty of RR models, typically represented by measured 
streamflow,	be	formally	acknowledged	to	investigate	its	influence	on	the	total	PU?

5. How can the total PU be incorporated into practical applications and can it be 
useful? How can the total PU be reduced and the model predictions improved?

6. How can consequences of future (climate or social) changes be predicted in 
SUBs with the scarce input-output variables data available? Are conceptual 
models with reduced complexity reliable in providing such predictions?

7. What	is	the	influence	of	the	monitoring	and	hydrological	data	situation	in	Cen-
tral-Eastern Europe on RR modelling in SUBs?

8. What are the main sources of the total PU in RR predictions in the Sluzew Creek basin?

2. RAINFALL-RUNOFF MODELLING IN 
SMALL URBANIZED BASINS (SUB)

2.1. Rainfall-driven flooding in SUB

2.1.1. Hydrological moddeling and its challenges

Hydrological modelling is an important tool to simulate real system (i.e. basin) 
response when statistical methods which require long-term data series cannot be ap-
plied. This includes such applications as predicting basin response under unknown 
future conditions in changing environment (climate or social), prolonging observed 
records	or	generating	synthetic	data	(Ciepielowski,	Dąbkowski	2006).	To	this	end, 
a physical basin must be substituted with a conceptual version i.e. model that imi-
tates its behaviour (Wagener et al. 2003, Wagener, Montanari 2011), see Fig. 2.1. 
Such a hydrological model M is usually constructed as a perceptual and conceptual 
hydrologists’ belief and understanding of a physical basin behaviour. This belief is 
typically supported by extensive empirical data. Any model is represented through 
linking model parameters (θM) by mathematical relationships with the model input 
(X) and model output (y) (Wagener et al. 2004) and can be described: 

 y = M (X, θM) (2.1)

Following Wagener et al. (2004), all hydrological models are lumped at some 
level	because	their	parameters	are	simplified	to	represent	a	behaviour	of	a	heteroge-

Rainfall-runoff modelling in small urbanized basins (SUB)12
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neous real world system as a homogeneous model’s cell (Fig. 2.1). A model’s cell 
represents the simplest model structure which is not further decomposed and has 
generalized characteristics over time and space, e.g. basin, sub-basin, hydro-layer, 
etc.	Such	simplification	is	necessary	due	to	the	human	inability	to	observe	all	fac-
tors	of	basin	patterns	in	sufficient	enough	details	(as	geology,	hydrology,	meteoro-
logy, evaporation, etc.) and to transmit these details to the model parameters in such 
a way that it would allow constructing a perfect model which identically reproduces 
observed	variables.	A	hydrological	model	remains	therefore	only	a	simplification	of	
a real basin and hence cannot perfectly reproduce a real basin response (Beck 1991). 
This results in deviations between predicted and observed variables. The accuracy of 
model predictions depends on several factors i.e.: model structure, selected parame-
ter values, external and/or initial model assumptions and others, see further Sect. 4.2. 

To reduce such deviations in predictions and to improve the model accuracy, 
usually three means can be considered: i) improving model structure, ii) adjusting 
model parameters or iii) collecting more and more accurate data. Improving the mo-
del structure usually leads to more complex models through involving additional 
parameters or input variables which allows better describing the process dynamics 
within the basin (Blöschl, Montanari 2010). This is not always possible because it 
usually requires additional data which may not be available. On the contrary, adju-
sting model parameters is simpler. To this end, a model is calibrated against recor-
ded input-output data in order to determine optimal parameters which give the best 
output simulation. The model thus better reproduces observed patterns and the simu-
lation accuracy improves. Adjusting model parameters during a calibration process 
leads, however, to a loss of some of their assumed a priori physical interpretation 
(Wagener, Gupta 2005). Such inferred parameters should therefore be referred as 
conceptual parameters or effective parameters (Romanowicz, Beven 2003) rather 
than physically-based parameters. Finally, collecting more and better data requires 
longer	time	and	financial	investment	in	measurement	campaigns.	In	this	regard,	en-

Fig. 2.1. Basin versus model; reproduced from Wagener et al. 2004

Rainfall	driven	flooding	in	SUB 13
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suring high data quality is of higher importance than extending available observa-
tions. Better data in terms of quality and information content usually allow for better 
identification	of	model	 parameters.	Yet,	 the	 improvement	 in	model	 predictions	 is	
tied with the model structure and model ability to reproduce observed patterns (see 
further Sect. 4.2). 

Because	 it	 is	 extremely	 difficult	 to	 obtain	 satisfying	model	 parameters	 only	
from physical basin characteristics, without considering any observed records, cali-
bration is crucial for most models (Wagener, Montanari 2011). Unfortunately, simple 
models may not satisfactorily imitate basin’s processes even after calibration due to 
excessive	 simplification	 (Beck	1991).	Alternatively,	 complex	models	may	 require	
many data for their optimal calibration which often are cost-ineffective compared 
to the gained improvement in predictions (Montanari et al. 2009). Consequently, 
a chosen model represents usually a compromise between a very poor model (that 
behaves incorrect) and a very complex model with a large amount of parameters 
which	cannot	be	determined	due	to	an	identifiability	problem	(Reichert	2012).	Such	
a problem occurs when available data do not contain enough information to unequ-
ivocally identify optimal parameters and an ambiguity in representation and inter-
pretation of past observed patterns remains (Beck 1991).

The	 lack	 of	 calibration	 data	 (e.g.	 streamflow,	 sediment)	 and	 the	 uncertainty	
associated with hydrological predictions are therefore seen as major limitations for 
hydrological science nowadays (Sivapalan 2003; Wagener, Montanari 2011). In the 
absence of gauged data, hydrologists are forced to search for better tools to make 
predictions. This means there is a need for models which, on the one hand, are less 
demanding in calibration data but, on the other hand, better reproduce observed va-
riables (Wagener, Montanari 2011) and consequently are less uncertain (Sivapalan et 
al. 2003; Montanari 2011; Wagener, Montanari 2011).

2.1.2.	Specificity	of	Small	Urbanized	Basin	(SUB)

Small	basins	are	typically	defined	as	basins	with	a	contributing	area	up	to	se-
veral dozens of square kilometres (Marshall, Bayliss 1994). This is usually up to 
50 km2	(Ciepielowski,	Dąbkowski	2006).	Such	areas	are	drained	by	small	local	stre-
ams which further supply larger rivers. 

Due to a small contributing area, on the one hand, small basins react rapidly to 
rainfall events and the response time usually may be measured in hours (Marshall, 
Bayliss 1994). Therefore, it is assumed that snow melting and groundwater do not 
play	a	significant	role	in	the	generation	of	runoff	after	a	rainfall	event.	For	flood	pre-
dictions, a basin response may thus be reduced to modelling only the direct surface 
runoff	while	omitting	baseflow	(Banasik	et	al.	2000).	On	the	other	hand,	small	basins	
are much more sensitive to local conditions such as land use changes resulting from 
basin urbanization (WMO 2008; Banasik 2011). In this, a sensitivity of a basin is 
inversely proportional to its area since small absolute changes lead to relatively large 
changes in the basin area. 

Small urbanized basins (SUB) are characterized as basins in which the ratio of 
urban	sites	has	been	significantly	increased	over	time.	This	results	from	a	transition	
from a natural or rural to an urbanized basin, and in small basins usually occurs rapi-

Rainfall-runoff modelling in small urbanized basins (SUB)14

monography.indd   14 2014-10-08   09:01:14



dly (Banasik et at. 2008). This ongoing process occurs until a basin becomes entirely 
urbanized; the ratio of urban sites equals 100%. Because usually the ratio of urban 
sites	in	SUBs	is	lower	than	100%,	it	is	difficult	to	separate	stages	prior	to	and	after	
the urbanization. Typically, prior to the urbanization, a basin possesses a dominating 
ratio	of	permeable	surfaces	(for	infiltrating	water)	such	as	farmlands	or	open	spaces	
(e.g. parks, forests, gardens, unpaved roads) with only a little ratio of urban sites, 
which is typically less than 5% (Marshall, Bayliss 1994). As urbanization goes on, 
rural areas are consequently substituted by urban sites with impermeable surfaces 
(e.g. paved streets, parking lots, building roofs), what gradually increases the ratio 
of urban sites, see Fig. 2.2. for an example.

An increased amount of sealed surfaces reduces permeable surfaces for water 
infiltration	and	a	possible	basin	retention	and	thus	strongly	modifies	a	basin	hydrolo-
gy (Hall, Ellis 1985; Byczkowski 1999). Consequently, rainfall water will be quickly 
drained as a surface runoff. This results in a larger volume of discharged water and 
faster concentration time (see Fig. 2.2 right panel); time needed for a rainfall water 
to be discharged into a local stream (Ignar 1993; Christopherson 1997). This is espe-
cially visible after heavy rainfalls when the magnitude of discharged runoff increase 
can be up to few times higher in an urbanized basin in comparison to the state prior 
to	the	urbanization,	Fig.	2.2	right	panel.	Thus,	during	flood	conditions	small	streams	
can rapidly change into large rivers and may endanger neighbourhood areas (Fig. 
2.2	left	bottom).	Such	very	short	and	rapid	floods	are	usually	known	as	flash	floods	
in	order	to	highlight	their	specific	nature	(White,	Howe	2004).	In	addition,	rainfall	
floods	may	be	accompanied	by	associated	indirect	flooding	from	combined	sewage	
overflows	(CSOs),	which	occur	due	to	exceeding	the	drainage	capacity	(Hall,	Ellis	
1985). 

Fig. 2.2. Runoff in a rural and an urbanized basin. Top left panel: transition from a rural (left) to an 
urbanized (right) basin by an example of Sluzew Creek, Poland; source: ursynow.org.pl. Bottom left 
panel:	example	of	a	small	urbanized	stream	during	ordinal	flow	(left)	and	high	flow	(right),	Sluzew	
Creek. Right panel: comparison of runoff in a rural (brown line) and an urbanized (blue) basin in 

response to the same rainfall (blue histogram), Sluzew Creek; reproduced from Banasik, Ngoc 2010 
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2.1.3.	Difficulties	of	flood	predictions	in	SUB

While	large	and	economically	important	basins	may	have	sufficient	hydrologi-
cal	gauges	for	the	determination	of	streamflow,	many	small	to	medium-sized	catch-
ments are often without any gauging station. In small basins if some observations 
are available, they are limited to a few years of the most basic hydrological variables 
such	as	rainfall	and	streamflow	or	water	level.	These	data	allow	approximating	only	
average yearly values. Often a possibility to continuously or even temporary model 
river	flows	 is	 not	 given	 (Ciepielowski,	Dąbkowski	 2006).	Unfortunately,	 in	most	
cases, those regions of the world that suffer most from ungauged network are poor 
equipped	 in	 resources	 for	flood	hazard	mitigation	and	adaptation	and	hence	 their	
vulnerability is high (Kapangaziwiri, Hughes 2008). 

Such scarce monitoring programs established for small streams is due to seve-
ral	reasons.	First,	it	is	difficult	to	cover	all	small	basins	with	monitoring	even	of	basic	
hydrological variables due to a short and rapid basin response during rainfall events. 
Therefore,	traditional	observations	with	one	record	per	day,	which	proves	efficiency	
in	bigger	basins,	are	insufficient	in	small	basins.	Hence	more	frequent	observations	
are	 required	 (Ciepielowski,	Dąbkowski	2006)	and	 those	are	expensive,	especially	
when automatic equipment must be used. Second, a regular monitoring program can 
usually	not	be	set-up	in	SUB	because	of	a	relatively	very	low	flood	hazard	risk.	This	
means	 that	 in	case	of	flooding	economical	 losses	and	casualties	will	be	relatively	
small	in	comparison	to	larger	rivers.	Third,	to	provide	a	sufficient	data	set	for	optimal	
hydrological model calibration, long time series of observed input-output data are 
required and such require time to be gathered. 

For instance, in Poland from 4 656 rivers only 700 (15%) are gauged (Ciepie-
lowski,	Dąbkowski	2006).	The	monitoring	program	covers	190	rivers	with	a	water-
shed area above 500 km2 and only 1.8% from small rivers with the area less than 
50 km2,	whereas	62%	(2	919)	of	all	rivers	in	Poland	are	defined	as	small.	

Despite the needs, increasing monitoring in reality is limited due to technical, 
economical and man power limitations and the amount of gauged basins frequently 
decreases (Kapangaziwiri, Hughes 2008). Therefore, SUBs remain mostly ungau-
ged or poorly gauged (Sivapalan 2003) or become considered as such speaking of 
current	or	future	land	use	changes	(Sikorska	et	al.	2012a).	Specifically,	the	term	of	
an	ungauged	basin	refers	to	a	particular	basin	which	fulfills	the	following	condition	
(EM 1994): »In the absence of data required for (statistical) parameter estimation 
for either existing or future conditions, the stream and contributing catchment are 
declared ungauged«.	This	means	that,	first,	a	basin	which	was	gauged	for	particular	
conditions, e.g. prior to the urbanization, may become ungauged when referring to 
future changed conditions, e.g. after urbanization (see Sect. 2.1.2). Second, follo-
wing	the	international	scientific	community,	International	Association	of	Hydrolo-
gical Sciences Predictions in Ungauged Basins initiative (PUB initiative), the same 
basin may be ungauged when speaking of one variable, e.g. sediments, but at the 
same time gauged in regards to other variables, e.g. water level. The term ungauged 
refers also to a basin with inadequately observations to enable computation of hy-
drological variables of interest to the accuracy acceptable for practical applications 
(Sivapalan et al. 2003). 
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Lack of input-output observations to calibrate models makes hydrological pre-
dictions	in	SUB	extremely	difficult	(Sect.	2.1.1).	Consequently,	making	predictions	
without the possibility for a direct model calibration has become a common problem 
in hydrological practice (Sect. 2.2) and may lead to large uncertainty on the predic-
ted variables (Franks 2002; Sivapalan et al. 2003; Wagener, Gupta 2005), see Sect. 
2.3. SUBs are therefore especially interesting for hydrologists. This will not change 
in the nearest future as long as social (urban) and climate changes continue. The 
current emphasis of the PUB initiative is to put on improving methods that enable 
hydrologists to make predictions in basins with limited or no historical observations 
and on the reduction of the uncertainties associated with these predictions (Sivapalan 
et al. 2003; Kapangaziwiri, Hughes 2008).

2.2. Coping with predictions in SUB
2.2.1. Conceptual modelling

The general lack of recorded data in SUBs (see Sect. 2.1.3 and 2.2.4) usually 
prohibits the use of detailed physically-based models with many parameters that 
have to be inferred from calibration data. Hence conceptual models that require infe-
rence of only a few parameters are frequently used to predict the consequences of the 
future urbanization in SUBs (Sikorska, Banasik 2010; Bocchiola et al. 2011; Sikor-
ska et al. 2012a). Such models link model output and input through the relation with 
conceptual parameters having a direct interpretation. Hence parameters of concep-
tual models can be inferred independently from recorded data (Wagener, Montanari 
2011) based on catchment indencies via a parametrization process (Kapangaziwiri, 
Hughes 2008). Thus, conceptual models are important tools in understanding and 
predicting basin responses to measured or modelled climate and land-use scenarios 
(McMillan	et	al.	2010).	However,	due	to	a	gross	simplification	of	a	complex	basin	
system to the form of a conceptual model, they may provide uncertain predictions 
(Seibert, Beven 2009; Sikorska et al. 2012a).

2.2.2. Parametrization process and its limitation

Parametrization relies on estimating prior information on conceptual model pa-
rameters independently from input-output calibration data. Typically, it takes one of 
the three main approaches (Wagener, Montanari 2011): 
•	 Regionalization;
•	 Parameter elicitation;
•	 Parameter transformation from a donor basin. 

Apart from the latter, both methods (1) and (2) use commonly available or easi-
ly accessible basin attributes such as climate, topography, vegetation, soil properties, 
annual rainfall, areal potential evapotranspiration, basin area and geology (Chiew, 
Siriwardena 2005; Boughton, Chiew 2007).

In the regionalization, model parameters are estimated by one of two methods: 
i) statistical methods or ii) based on regional average values (Kapangaziwiri, Hu-
ghes 2008). In regards to i), bivariate or multivariate linear and non-linear regression 
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relationships are developed between optimized model parameters and some basin 
attributes for a number of gauged basins. These relationships are next transferred to 
the basin of interest (e.g. Seibert 1999; Merz, Blöschl 2004; Parajka et al. 2005; Wa-
gener, Wheater 2006; Oudin et al. 2008). In refer to ii), parameter values are mapped 
to average values for the region, based on the assumption that two or more basins 
that are located close to each other in real world would have a similar runoff regime. 
This	is	justified	by	smooth	changes	in	climate	and	basin	properties	in	a	physical	spa-
ce (Merz, Blöschl 2004). Parameters are next assigned based on a similarity in soils, 
rainfall, runoff ratios, etc. between basins. 

Model parameters can be also elicited only from local information on physical 
basin’s characteristics such as soil hydraulic properties, meteorology, geology, etc. 
(e.g., Atkinson et al. 2002; Kapangaziwiri, Hughes 2008). 

Finally, model parameter set may be transferred from a basin with similar cha-
racteristics (donor basin). A similarity between two basins is assessed based on some 
measure	 of	 hydrological	 similarity	 (indicies)	 e.g.	 yearly	mean	 streamflow,	 yearly	
runoff, precipitation (e.g. McIntyre et al. 2005; Buytaert, Beven 2009; Wagener, 
Montanari 2011). 

All three described approaches allow inferring model parameters for basins 
with poor data coverage such as SUBs. Such delivered parameters are, however, sub-
ject	to	uncertainty	which	may	lead	to	significant	uncertainty	on	the	predicted	varia-
bles. This uncertainty has its sources in models structural errors, lack of parameter 
identifiability	during	the	calibration	if	conducted,	and	a	lack	of	reliable	relationships	
between observable basin characteristics and model parameters (e.g. Wagener et al. 
2004; Wagener, Wheater 2006; Wagener, Montanari 2011). Moreover, the (1) method 
allows to transfer only single model parameter values without their mutual relation-
ships (Kapangaziwiri, Hughes 2008). Alternatively, the (3) method allows to include 
mutual dependencies between parameters. However, model parameters transferred 
from other basins will include also calibration errors from that basin (Franks 2002). 
This	method	additionally	needs	a	careful	selection	of	similar	basins	that	are	identified	
based	on	some	selected	group-defined	signatures	(Nathan,	McMahon	1990).	

To reduce the uncertainty in predictions, it is still recommended to calibra-
te conceptual models at least with short-term recorded data (Wagener, Montanari 
2011). This allows to better identify model parameters and leads towards a reduction 
of uncertainty attached to model parameters and consequently to model predictions. 
As	shown	by	Seibert	and	Beven	(2009),	short	time	series	of	streamflow	observations	
can greatly help to infer accurate parameter estimates for a conceptual model applied 
to small and medium-size basins.

2.3. Uncertainty of hydrological predictions in SUB
2.3.1. Why uncertainty? Probabilistic vs. deterministic approach

In hydrological modeling (Sect. 2.1.1), there are two main approaches in use: 
deterministic and probabilistic. A deterministic model does not involve any random-
ness into the hydrological process. Therefore, a certain input under certain initial 
and boundary conditions will always produce the same model output. In contrast, 
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a probabilistic model (also stochastic) involves randomness into the hydrological 
process. Thus, despite constant initial or boundary conditions, the process may evo-
lve in several directions (Montanari et al. 2013), see also Fig. 2.3. 

Hydrological and meteorological events are commonly modelled as random 
events	because	it	is	difficult	to	define	their	magnitude,	location,	time	and	frequency	
of	occurrence	 (Ciepielowski,	Dąbkowski	2006).	Based	on	 their	 past	 observations	
it	is	possible,	however,	to	deduce	on	principles	of	such	events	by	defining	the	po-
ssibility of their occurrence. Unfortunately, due to their high variability, long term 
observations are usually required for their analysis. Representing model outcomes as 
random variables allows including prediction uncertainties into model results. 

2.3.2. Value of uncertainty analysis in hydrological modelling 

Because model outputs are uncertain (see Sect. 2.1.1) uncertainty analysis 
should be unavoidable in any (hydrological) modeling. Although this is currently 
emphasized in hydrological community (Sivapalan et al. 2003; Wagener et al. 2004; 
Efstratiadis, Koutsoyiannis 2010), it is still not a practice to link uncertainties to 
model predictions and to communicate them to decision makers. Consequently, de-
cisions are often made without the knowledge of their uncertainty or even a possi-
bility of being wrong. This leads to a false society perception of living safe; e.g. in 
floodplains	or	behind	levees	which	are	usually	constructed	for	a	flood	with	a	1%	pro-

Fig. 2.3. Deterministic (left) vs. probabilistic (right) modelling. Notation: 
X – real forcing basin input; Xx – input into the model; y – model output; 

Y – real basin output (response); θ – model parameters; t – current time step; 
crossed circle – measurements location; based on Wagener et al. 2004.
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bability	of	occurrence.	This	means	that	on	average	a	flood	will	occur	once	per	100	
years, so relatively rarely. Such	a	false	confidence	is	illustrated	by	the	example	below.	

Didactical example 
Figure	2.4	presents	the	importance	of	uncertainty	estimation	in	flood	risk	stu-

dies. A precise prediction determines here whether the inhabitants of a house are 
alarmed or not. Two possible predictions are to be considered. I – the house will be 
flooded	–	the	inhabitants	are	alarmed;	and	II	–	the	house	will	not	be	flooded	–	the	
inhabitants are not alarmed. These two predictions lead to four possible scenarios. 

Scenario	IA	–	the	house	is	flooded.	Because	the	inhabitants	were	alarmed	and	
possibly evacuated, the casualties and economic losses are greatly reduced. Scenario 
IB	–	the	house	is	not	flooded.	The	inhabitants	were	evacuated	so	the	economic	losses	
occur only due to the false alarm; no casualties are borne. Scenario IIA – the house 
is	not	flooded.	The	inhabitants	were	not	evacuated	so	neither	economic	losses	nor	
casualties	are	borne	(Fig.	2.4	left).	Scenario	IIB	–	the	house	is	flooded.	The	inhabi-
tants were not evacuated so both economic losses and casualties are expected to be 
high (Fig. 2.4 right). 

Fig.	2.4.	Example	of	the	significance	of	uncertainty	estimation	for	the	house	located	in	floodplains;	
prediction	(II)	–	the	house	will	not	be	flooded;	scenario	A	(left)	–	accurate	prediction, 
the	house	is	not	flooded;	scenario	B	(right)	–	wrong	prediction,	the	house	is	flooded; 

source: http://gizmodo.pl/tag/powodz; http://wiadomosci.dziennik.pl 

The	 example	 above	 clearly	 proves	 the	 significance	 of	 the	 precise	 prediction	
and the knowledge of a possibility of being wrong. If instead of a single prediction 
II:	the	house	will	not	be	flooded,	the	uncertainty	of	this	prediction	would	have	been	
communicated	i.e.	The	house	may	be	flooded,	the	losses	in	scenario	IIB	could	have	
been	greatly	reduced.	Because	if	a	possibility	of	being	flooded	was	communicated,	
the prediction II would have leaded to the same actions as in the prediction I; i.e. 
inhabitant evacuation. 

Thus, communicating predictions with uncertainty protects from an apparent 
belief that derived single estimates are the only true solution and allows keeping 
alertness (Wagener et al. 2004). The uncertainty consideration can support decision 
making and usually three main reasons are given (Reichert 2012), namely:
•	 growing expectations from decision makers for a higher of accuracy and preci-

sion in hydrological predictions, 
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•	 growing interest in reducing the uncertainty in modelling and a better integra-
tion between a model and data, 

•	 increasing knowledge and understanding of hydrological processes within 
scientists’ community. 
Uncertainty analysis (UA) allows one to quantify this uncertainty in terms of 

feasible values that can be pracitally used in decision making process. When pro-
perly evaluated, UA provides with estimates which have a statistical interpretation. 
Providing outcomes with their probability may, however, increase the complexity in 
decision making because such outcomes should be implemented together with their 
probability estimates (Rossi et al. 2005).

2.3.3.	Uncertainty	definition	

Despite	many	hydrological	studies	on	uncertainty,	its	unique	definition	is	still	
missing	(Wagener	et	al.	2004)	and	only	a	few	attempts	have	been	taken	to	define	it.	
First, by contrast to the determinism, uncertainty may be described as any departu-
re from unachievable ideal of complete determinism (Walker et al. 2003). Second, 
Funtowicz and Ravetz (1990) described uncertainty as a situation of inadequate infor-
mation due to inexactness, unreliability, ignorance. Third, uncertainty may be consi-
dered, following Montanari (2007), as an additional attribute of information.

Given above, it should become clear that the uncertainty should not only be in-
terpreted as a lack of knowledge that arises from incomplete information or ignoran-
ce (Colyvan 2004). Conversely, more information and better knowledge on a certain 
issue can bring more uncertainty because it allows one to recognize that the analysed 
process is more complex than it was assumed before. This is illustrated in Fig. 2.5 
which presents different levels of uncertainty awareness, starting from an unachieva-
ble deterministic approach to an indeterministic approach and a total ignorance at the 
other side. Between both different levels of the ignorance and uncertainty exist and 
those include statistical uncertainty, scenario uncertainty and recognized ignorance.

Determinism represents an idealistic situation in which a system and its be-
haviour are intensively examined and the model perfectly imitates the system. It is 
worth	noting	that	determinism	defined	in	such	a	way	is	not	equal	to	the	deterministic	
approach in modelling, which assumes not that a system is extensively examined 
and therefore certain but that it can be conceptually described as deterministic, see 
Sect. 2.2.1. Opposite to the determinism, indeterminacy represents a situation when 
a mechanism and behaviour of a system are not known precisely (or not at all) and 
this unawareness (ignorance) cannot be reduced. Statistical uncertainty refers to any 

Fig. 2.5 The progressive transition between determinism and total ignorance; 
source: Walker et al. 2003
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uncertainty that can be described accordingly to statistics. Scenario uncertainty de-
scribes the uncertainty in environmental system due to unknown (usually future) 
conditions and their effects on the system and it cannot be captured by statistical 
variables. Recognized ignorance represents uncertainty about the mechanisms and 
functional relationships of the system. Finally, a total ignorance describes a situation 
when ignorance is not yet recognized due to the lack of modeller’s knowledge. This 
ignorance cannot be reduced unless it becomes aware or investigated (e.g. due to 
research) and thus will develop into recognize ignorance. 

In hydrological modeling, a notion ’uncertainty’ alone is, however, uninfor-
mative and should always be followed by an additional notation to what certain 
object	it	refers	to,	e.g.	parameters	uncertainty,	uncertainty	of	predictions	(flooding)	
(Montanari 2007). Mathematically, the uncertainty of an event (model output) can be 
expressed by a probability of this event occurrence (Box, Tiao 1992; Winkler 1996; 
Reichert 2011).

2.3.4. Uncertainty of hydrological model predictions (predictive uncertainty) 

A hydrological model cannot perfectly reproduce the process that it models 
(Sect. 2.1.1) and thus its output is uncertain. In hydrological community, this uncer-
tainty is called predictive uncertainty (elsewhere model outcome uncertainty or pre-
diction uncertainty). An occurrence of this uncertainty demonstrates a discrepancy 
between an observed output and predicted model output, which is called a prediction 
error. If an observed output is available, it may be compared with predictables in 
order to estimate this error, which allows one for estimating model credibility.

Conceptually, there is only one predictive uncertainty which refers to model 
output and sometimes is called total predictive uncertainty (elsewhere integral pre-
dictive uncertainty) (Winkler 1996). However, it is commonly agreed that the pre-
dictive uncertainty has different sources (Walker et al. 2003; Wagener et al. 2004). 
For hydrological studies, it can be important to locate sources of uncertainty and 
assess their contributions. This information may support modelling by pinpointing 
the weakest part in hydrological modelling. Thus, a distinction between uncertainty 
due to various contributing sources has practical aspects. To this end, the predictive 
uncertainty can be decomposed into various contributors (uncertainty sources) what 
can be, however, done only under certain assumptions. The most common assump-
tion relies on source additives.

2.3.5. Sources of the predictive uncertainty 

The predictive uncertainty sources in hydrological modelling are typically re-
presented by (Walker et al. 2003; Wagener et al. 2004): 
1. Model	structure	deficits	(Ajami	et	al.	2007;	Reichert,	Mieleitner	2009;	Renard	

et al. 2011; Honti et al. 2013) see Sect. 3.2.2, which arise with mapping the real 
system to a mathematical model structure. This, in particular, includes relation-
ships and functions between all model elements as inputs, outputs and varia-
bles, initial boundaries, functional forms, parameters, equations, assumptions 
and mathematical algorithms (Walker et al. 2003).
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2. Parameter uncertainties (Beven, Binley 1992; Ajami et al. 2007; Vrugt et al. 
2008a) see Sect. 3.2.3. In particular, the uncertainty in model parameters is 
related to the type of parameters. Namely, exact parameters such as universal 
constants (e.g. π	=	3.141...)	and	fixed	parameters,	which	have	been	extensively	
investigated previously (e.g. earth gravity) are assumed to be certain. All others 
should be considered as uncertain.

3. Input uncertainty (Kavetski et al. 2002, 2006a, b; Renard et al. 2010; Vrugt et 
al. 2008b; McMillan et al. 2011), see Sect. 3.2.4, that is associated with input 
variable that forces model behaviour (external driving force). Additional errors 
may also occur during measuring process of input data or data pre-processing.

4. Output uncertainty or uncertainty in calibration data which occurs due to un-
certainty in output data for model calibration and is mostly caused by observa-
tional errors (measurement) (Schmidt 2002; Di Baldassarre, Montanari 2009; 
McMillan et al. 2010).
Traditionally in hydrological modelling, priority has been given to model struc-

ture errors and model parameter uncertainty (Vrugt et al. 2008a). Other sources have 
been	usually	assumed	not	to	be	of	the	considerable	importance	due	to	small	influence	
on the model’s output (input uncertainty) or a common belief in a high accuracy of 
calibration data (output uncertainty). However, even if not all of those sources have to 
be	significant	in	every	model	and	every	basin,	all	should	be	properly	acknowledged.	

Unfortunately, while making predictions in SUB, it is not always possible to 
distinguish between diverse uncertainty sources because of a noticeable dependency 
between all of them, especially between a model structure and inferred parameter 
uncertainties (Walker et al. 2003).

2.3.6. Predictive uncertainty nature 

The acknowledged predictive uncertainty is subjected to epistemic and aleatoric 
uncertainty and thus may be reducible or not (Aronica et al. 2013). The predicti-
ve uncertainty may be reduced (epistemic uncertainty) if it occurs due to imperfect 
knowledge on the system, limited or inaccurate data, measurements error, limited un-
derstanding of the system, imperfect models, subjective judgment. Alternatively, the 
predictive uncertainty cannot be reduced (aleatoric uncertainty else variability uncer-
tainty) if it is emerging from the variability of the complex system being described. 
Hence it is caused by variation in external input data, input functions, parameters and 
model structure due to randomness in an environment itself, incoherence in human 
behaviour, social, cultural and economic dynamics and technological variability. 

It must be stressed here that the predictive uncertainty usually comprises both 
types i.e. epistemic and aleatoric uncertainties. Thus, usually only a part of it (epi-
stemic uncertainty) may be reduced while some uncertainty (aleatoric uncertainty) 
always	remains.	In	this,	identification	of	the	predictive	uncertainty	nature	(reducible	or	
irreducible) is crucial when assessing whether more research (empirical efforts) would 
bring	more	information	and	significantly	reduce	the	current	uncertainty	or	rather	other	
model approaches should be chosen (Winkler 1996). The uncertainty analysis allows 
locating	significant	uncertainty	sources	and	in	this	way	supports	making	decisions.
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3. METHODS – BAYESIAN UNCERTAINTY ANALYSIS IN SUB
3.1. Preface to methods chapter

3.1.1. Stochastic description of the rainfall-runoff process

A rainfall-runoff (RR) process within a basin may be characterized by the real 
precipitation, evaporation, etc. that induces the real basin response known as real 
runoff	(streamflow,	water	level	or	sediment	concentration),	see	Fig.	3.1.	In	a	similar	
fashion, an RR model imitates the real system by transforming an input variable (e.g. 
rainfall) into an output variable (e.g. runoff). Unfortunately, due to measurement and 
perception	errors	 (Sect.	2.4.4	and	3.2)	 real	variables	are	very	difficult	 to	measure	
in practice and instead observed variables are measured. This is represented by the 
equation of observed output and input:

 Yo = Y + ey and Xo = X + ex (3.1)

Where, Yo, Y, ey are observed and real output and observational error, Xo, X and 
ex are observed and real input and its error.

Also, modelled output usually differs from the observed output due to structural 
limitations of the model (Sect. 3.2). A calibration of a model allows reducing errors 
of a mismatch in predictions but some errors usually remain due to many unknowns 
involved in hydrological modelling (Reichert, Schuwirth 2012). Additional errors 
may occur when transferring observed forcing variable (e.g. punctual precipitation) 
into input required by model (e.g. areal precipitation). This is represented on Fig. 3.1.

Note that errors integrate along arrows so that the modelled outcome y (on Fig. 
3.1.) based on the observed input variable (Xo) contains errors due to: i) measurement 
and transformation errors of the observed input variable (X → Xo → Xx), ii) structural 
errors of the model (Xx	→	y) iii) errors of model parameters (θ) and iv) measurement 
errors of the observed modelled output (Y	→	Yo) if the model is calibrated. All those er-
rors contribute to the predictive uncertainty of the variable predicted by a RR model 
(e.g. y). However, the importance of diverse errors may be different and thus errors 
may contribute unequally to the predictive uncertainty. 

3.1.2. Formulation of the stochastic rainfall-runoff model 

A deterministic hydrological model M that transforms input data (X ) into mo-
delled output y can be represented by a function of model parameters θM and X (Ka-
vetski et al. 2006a, b) as: y =  M (X, θM), see Eq. 2.1. A bold font indicates a vector. 
A model M aims at imitating the real system variable Y. When this imitation is im-
perfect (Sect. 3.2.2), additional errors arise due to i) measurement noise of the sys-
tem	variable	represented	by	ε	and	ii)	errors	in	input	and	structural	limitations	of	the	
hydrological model. These last two error sources produce what is named model bias 
represented by B. A statistical description of the bias is not a trivial task and requires 
undertaking research of its own (Del Giudice et al. 2013). Recently, the inclusion of 
these errors into predictions has been proposed, by combining a deterministic model 
M with both error terms (Reichert, Schuwirth 2012): 
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  Y = y (X, θM) + B (X, θB) + ɛ (θɛ) (3.2)

Where Y is the predicted stochastic output of M when accounting for errors. 
θε and θB represent parameters of the measurement error and of the bias, respectively. 
B(X, θB)	represents	a	stochastic	process	and	cannot	be	known	in	advance.	ε	could	be	
only estimated if the Y	is	known.	Thus,	if	only	insufficient	information	on	both	errors	
is available, it is a common practise to model B(X, θB) + ε(θε) as a single error term E: 

  Y = y (X, θM) + E (θE) (3.3)

Where θE = {θB; θε} and θM represents a vector with all model parameters: θM = 
{θM1 ,θM2,...,θMn}.

3.2. Sources of predictive uncertainty

The predictive uncertainty (PU) of model predictions is modelled as an accu-
mulated uncertainty of four mentioned uncertainty sources (see Fig. 3.2 and Sect. 
2.3.4). These sources are subject to uncertainty of diverse origin.

3.2.1. Uncertainty of model structure 

Uncertainty in a model structure is unavoidable in hydrological modelling whe-
never an imperfect model is constructed (Wagener, Montanari 2011). In general, this 
structural uncertainty may be caused by (Reichert 2011): 

Fig. 3.1. Schema of possible uncertainty sources in hydrological modelling. Dashed lines pinpoint 
location of possible errors. Random quantities are shown in ellipsoids, deterministic in squares. 

Notation: X, Y represent a forcing variable and model response that occurred in the reality; Xo and Yo 
represent observed variables respectively; Xx is transformed observed input variable into the model; 

y is modelled output; bold font indicates vectors. 
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 • inadequate selection of model variables and processes, 
 • inadequate selection of process formulations,
 • inadequate choice of the spatial and temporal resolution of the model. 

Consequently, a model, due to its structural limitations, will reproduce an observed 
variable with an prediction error (Gupta et al. 1998). Unfortunately, a formal description 
of	this	error	is	difficult.	Indeed,	it	is	extremely	difficult	to	describe	model	errors	in	the	
form of relations; otherwise, the model structure could have been improved, e.g. by in-
cluding a correcting factor (Reichert, Schuwirth 2012). To reduce errors in predictions, 
a model is usually calibrated against observed data. This allows adjusting model para-
meters so that the predicted variable can better reproduce the observed variable. 

A	calibration	of	 the	model,	however,	has	 two	difficulties.	First,	 if	 the	model	
structure remains untouched, the model calibrated to some observed data will most 
likely not be able to predict outcomes for new data sets with the same accuracy. Se-
cond, some models, even after calibration, cannot reproduce data in a satisfying way 
(Sect.	2.1.1).	This	is	mainly	caused	by:	i)	too	far	going	simplifications	of	a	model	
structure, ii) input uncertainty in the forcing variable and/or iii) a poor data set which 
does not contain enough information to infer all model parameters which results in 
model overparametrization. This problem may be of a particular concern for SUBs 
that are usually poorly gauged (Sect. 2.1.3) and for which typically simple concep-
tual models must be applied (Sikorska et al. 2012a).

3.2.2. Uncertainty in model parameters 

Parameters of hydrological models are usually estimated from observed output 
data or physical properties of a basin and typically consist of a basin area, a runoff 
coefficient,	an	impervious	area	and	other	basin	characteristics.	Traditionally,	para-
meter values or ranges have to be chosen prior to the calibration. Such an arbitrary 
choice of parameters is subject to the uncertainty. As stated in Sect. 2.3.4, only exact 
and	fixed	parameters	may	be	assumed	as	constant	i.e.	without	any	uncertainty.	All	
others should be considered as uncertain. 

Parameter uncertainty is strongly related to the model structure uncertainty 
(Sect. 3.2.2). In the case of no bias being apparent in the model, parameter uncerta-
inty	would	tend	to	zero	as	the	quantity	of	calibration	data	approaches	infinity.	

Typically, the parameter uncertainty is of the highest concern in a hydrological 
community. This is due to a common (mistaken) belief that model parameters are the 
most unsure component in modelling since they need calibration to predict a variable 
in a satisfying way (Sect. 2.1.1). Conceptually, model parameters are also the easiest 
component of uncertainty to account for because of their explicit description.

3.2.3. Model’s input uncertainty 

Input uncertainty describes the uncertainty in the observed variable that drives 
the model (see Sect. 2.3.4). Traditionally in hydrological modelling, input uncerta-
inty	was	assumed	 to	be	 insignificant	 relatively	 to	other	 sources	and	 therefore	has	
been frequently disregarded by hydrologists. However, it has been recognized that 
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a	model	input	as	a	forcing	variable	has	a	crucial	influence	on	model	predictions	and	
consequently on model accuracy (Kavetski et al. 2002; Kuczera et al. 2006).

The input into rainfall-runoff (RR) models usually consists of observed precipi-
tation and sometimes evaporation. The uncertainty of evaporation data arises mostly 
from the measurement errors and may be considered as 2-5% of measured values 
(WMO 2008). In SUBs, due to smooth and slow changes in evaporation over the 
spatial area and a small contributing area, the evaporation over the entire basin area 
can be assumed to be constant. The error due to the spatial variability in evaporation 
is	thus	less	significant.

In	 contrast	 to	 this,	 precipitation	 is	 characterized	 by	 a	 significant	 spatial	 and	
temporal	variability	of	 rainfall	fields	over	 the	basin	area	 (Fig.	3.2).	 Ideally,	 input	
precipitation into RR models should represent this variation. An areal measure of 
precipitation can be achieved e.g. with radar data. However, their high costs and 
poor spatial resolution (few kilometers) usually limit practical applications in SUBs. 
Instead, precipitation within a basin is traditionally measured with point rain gauges 
unevenly spread over an area of interest. The advantage is a relatively low cost of 
maintenance and data-gathering. Unfortunately, such irregular rain gauge networks 
cannot	capture	rainfall	field	variability	and	are	thus	limited	to	measure	only	a	punc-
tual rainfall occurrence (Kavetski et al. 2002, 2006; Bárdossy, Das 2008; Moulin et 
al. 2009; McMillan et al. 2011). Because the RR model requires areal precipitation 
as an input, measured punctual rainfall must be averaged over the basin area. 

Given the aforementioned considerations, even if errors in precipitation measu-
res alone can be assumed to be small and represent only 3-7% of measured values 
[WMO 2008], the uncertainty in input rainfall to RR models must still be considered. 
In particular, this may be due to, (McMillan et al. 2011): 
•	 Usually	poor	representation	of	rainfall	fields	over	the	entire	basin	by	a	(small)	

set of punctual gauges which is the case for most of the SUBs. It is also not 
uncommon for a single gauge to be located close enough to be used. 

Fig.	3.2.	Spatial	variation	of	a	rainfall	field	over	a	city,	source:	http://forum.xcitefun.net

Sources of predictive uncerainty 27

monography.indd   27 2014-10-08   09:01:17



•	 Interpolation of rainfalls between measures observed on rain gauges, which is 
mandatory due to a sparse rainfall gauge network. Although this may not play 
a	 significant	 role	 in	 small	 rural	basins,	SUBs	are	particularly	 subjected	 to	
such errors as a result of i) local rainfalls of which coverage is limited only to 
some	districts	within	the	city	and	ii)	cities’	influences	on	clouds	(warmness,	
wind, etc.). 

•	 Measurement error in commonly used tipping bucket rain gauges. This includes 
both	systematic	and	random	errors,	as	well	as	those	due	to	local	influencing	fac-
tors	(mechanical	limitations)	such	as	wind	effects,	evaporation	losses,	influence	
of neighbourhood (trees, buildings, etc.).
Consequently, input precipitation into RR models extracted from point rain 

gauges is expected to be highly uncertain.

3.2.4. Uncertainty in calibration data 

Measurement uncertainty of the modelled quantity is called uncertainty in ca-
libration data or output uncertainty. The accuracy in calibration data determines the 
reliability of hydrological predictions and is therefore of particular importance (Do-
meneghetti et al. 2012). The uncertainty in calibration data occurs due to the fact that 
the real value of a variable can never be precisely captured during measurements 
(Walker et al. 2003), see also Fig. 3.2. Therefore, measured data are subject to errors 
which may stem from: 
•	 sampling,
•	 inaccuracy/imprecision in measurements,
•	 transformation errors when mapping directly measured variables into desired 

variables	(e.g.	water	levels	to	streamflow	by	a	rating	curve).
Uncertainty	in	calibration	data	and	especially	its	influence	on	predictive	uncer-

tainty is rarely assessed quantitatively by hydrologists, for two main reasons (Sikor-
ska	et	al.	2013).	Firstly,	it	is	difficult	to	make	any	statement	on	output	uncertainty	
if data are transformed from other quantities. Secondly, modellers often work only 
with the derived quantities and not with the raw data. 

Given these facts, it is a common practice to assume that this uncertainty is 
much smaller than that from model parameters, model structure or input, and is thus 
assumed to be negligibly small (Di Baldassarre, Montanari 2009; Di Baldassarre, 
Claps 2011; Sikorska et al. 2013). This can be true when special efforts are put into 
maintenance	procedures	and	better	equipment	which	allow	for	a	significant	reduc-
tion of the output uncertainty. In all other situations, however, this uncertainty should 
be considered cautiously. This is especially so as some uncertainty always remains 
despite	sufficient	maintenance	(see	Sect.	2.3.4).	

Calibration	data	typically	refer	to	streamflows	for	rainfall-runoff	(RR).	Hence,	
the uncertainty of this variable is further discussed.

3.2.5.	Uncertainty	of	streamflow	data	

The	uncertainty	 of	 streamflow	data	 is	 strongly	 dictated	by	 the	measurement	
method.	If	streamflow	measurements	are	of	a	high	quality,	e.g.	gather	in	good	con-
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ditions, their measurement errors are assumed to be rather small (5%) (WMO 2008). 
Such	small	errors	can	be	achieved	when	streamflows	are	gathered	by	current	meters	
with the commonly used area-velocity method (Le Coz 2012). This method links 
streamflow	to	a	cross	sectional	area	and	an	average	velocity	which	can	be	measu-
red with the average error of 2-5% (Di Baldassarre, Montanari 2009; WMO 2008). 
Although	very	convenient,	 this	method	becomes	 impracticable	 in	field	conditions	
when continuous or frequent data are required due to time consuming measurements 
required	to	obtain	a	single	stream-flow	record.	

RR	models	require,	however,	continuous	streamflow	data	for	their	calibration.	
Thus,	streamflows	are	usually	computed	from	easier	to	continuously	measured	water	
levels	with	the	use	of	a	hydraulic	model	which	relates	streamflows	to	water	levels, 
a water level-runoff (LR) model (Sikorska et al. 2013). A LR is usually represented 
by a rating curve (RC) which consists of an empirical relationship and therefore must 
be calibrated for a certain cross section on data obtained from hydrometric measu-
rements (Le Coz 2012) Alternatively to an RC, a numerical hydraulic model can be 
constructed. This is, however, less practical because more data are required, e.g. de-
tailed data on the river channel properties which are more often than not unavailable 
for SUBs (Sikorska et al. 2013). A measurement error of water levels can be assumed 
to be small, in the range of 1-2 cm (WMO 2008). 

Unfortunately,	using	RCs	to	infer	streamflow	records	is	not	free	from	error	(Di	
Baldassarre et al. 2012; Sikorska et al. 2013), which is mostly caused by: 
•	 Uncertainty in measured data used to calibrate an RC (punctual records of 

streamflow-water	level	relations);	
•	 Structural and physical limitations of the RC method due to assumptions of ste-

ady	flow	conditions,	neglecting	hysteresis	effect,	or	simplifying	a	cross	section	
structure to a manageable shape;

•	 Uncertainty in method’s parameters due to temporal and seasonal changes of 
hydrological conditions within a certain cross section; as seasonal variation of 
vegetation, temporal movements of a stream bed, variation of a cross section 
shape, etc.;

•	 Extrapolation of an RC beyond the measured (or recommended) range.
It has been shown that the latter errors dominate among all other sources of 

uncertainty in RCs (Domeneghetti et al. 2012). Unfortunately, calibration data for 
RC	are	often	limited	only	to	normal	conditions	when	the	interest	lies	in	flood	flows	
(Pappenberger	 et	 al.	 2006).	Thus,	 in	 flooding	 studies,	 it	 is	 usually	 a	 necessity	 to	
extrapolate	an	RC	in	order	to	obtain	streamflows	for	RR	model	calibration.	

All these factors contribute to overall RC uncertainty which may be even up 
to 25% in the extrapolation range (Kuczera 1996; Di Baldassarre, Montanari 2009; 
Di Baldassarre et al. 2012). This quantitative contribution is, however, not generali-
zable since it is strongly related to a case study, available data and individual cross 
section characteristics. For instance, a bed movement and seasonal changes will not 
be	observed	in	SUBs	with	an	artificial	channel.	Interestingly,	it	is	an	often	neglected	
fact that the uncertainty in the RC propagates through the RC method and is further 
linked	to	streamflow	records	computed	with	the	RC.	This	uncertainty	will	consequ-
ently	influence	RR	model	predictions.
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3.3. Introduction to the Bayesian inference

The uncertainty of predictions as represented in the Sect. 3.2 are only meaning-
ful	 if	 they	 have	 a	 clearly	 defined	 interpretation.	Unfortunately,	many	 uncertainty	
approaches that are commonly in use do not provide uncertainties that can be sta-
tistically interpreted. Among others, the most popular approach in hydrology is the 
generalized likelihood uncertainty estimation or shortly GLUE (Beven, Binley 1992; 
Romanowicz, Beven 2003; Montanari 2007). This technique relies on a subjective 
likelihood measure which weighs the probabilities associated with different parame-
ter sets in order to derive the posterior distribution of output variable. Thus, every 
possible	model	outcome	arrived	from	the	defined	parameter	space	is	weighed	with	
this likelihood measure (Romanowicz, Beven 2006). The key feature of GLUE is 
that	the	likelihood	measure	is	specified	as	an	objective	function.	Thus,	the	estimated	
uncertainty	depends	largely	on	the	subjectively	specified	likelihood	measure	(objec-
tive function) (McIntyre et al. 2002). This likelihood measure should not be interpre-
ted	as	a	statistical	likelihood	estimator	unless	it	is	explicitly	specified	as	such	(e.g.	
Romanowicz et al. 1994). The form of GLUE with statistically described likelihood 
is refereed sometimes as a formal GLUE (Romanowicz, Beven 2006).

The principle of GLUE lies in mapping all uncertainty in prediction entirely 
to the parameter uncertainty and in propagating this uncertainty through the model 
structure in order to estimate uncertainty of a modelled output. Because conceptually 
it is easy to compute, GLUE is a common choice to estimate uncertainty in hydro-
logical studies. The main drawback of the classical GLUE, i.e. without statistically 
described likelihood, is the assumption on model correctness. As a result of this, 
model parameters compensate for the model error. If the model does not reprodu-
ce perfectly observed data, this assumption will lead to the increase in parameter 
uncertainty. However, if many data points are available, the parameter uncertainty 
becomes low and the associated uncertainties usually are underestimated. Also, mo-
del parameters mapped with error of diverse sources become hardly interpretable. 
Finally, derived uncertainty of predictions does not have necessarily a probabilistic 
interpretation	and	may	not	reflect	the	real	situation.	Thus,	such	estimated	uncertainty	
becomes unhelpful for further studies and applications, and concern a question of 
their implementation into decision making processes. 

In contrast to that, a formal Bayesian approach is based on a subjective interpre-
tation of probabilities and is fully consistent with probability calculus. The principle 
of the Bayesian approach lies in the Bayes’ theorem. 

3.3.1. Bayes’ theorem and Bayesian probability 

The	Bayes’	theorem,	first	introduced	by	Thomas	Bayes	(1702-1761)	and	further	
developed to the nowadays form by Pierre-Simon Laplace (1749-1827), uses the 
evidence that an event has occurred in the past to calculate the probability that it will 
occur in the future. Following probability theory, it is expressed as the conditional 
probability of an event given the probability of another event which has already 
occurred (Box, Tiao 1992; Gillies 2000). An example of conditional probability ap-
plication in hydrology is given below.
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Didactical example
Consider a following situation, taken from Reddy (1997), a study of daily ra-

infalls	 at	 a	 certain	 rain	 gauge	 station	 has	 revealed	 that	 in	 July	 the	 probability	 of 
a rainy day following a rainy day at this certain rain gauge is 0.5. If it is observed 
that	a	certain	day	in	July	is	a	rainy	day,	what	is	the	probability	that	the	next	two	days	
will also be rainy?

Following some initial rainy day A0, let A1	be	the	first	rainy	day.	A2 will describe 
the second rainy day. The probability of A1 being the rainy day is, from the given 
information, equal to 0.5 because A0 has already occurred. Then the probability that 
the second day A2	is	also	a	rainy	day	given	that	the	first	day	A1 is a rainy day is now 
sought for. This is P(A2|A1):   

P(A2|A1) describes now the probability that the following day is a rainy day if 
the day before is a rainy day. From the given information, this probability also equ-
als 0.5. Thus, the probability that both A1 and A2 are rainy days will be described by 
P(A1∩A2): 

 If A1 and A2 were independent events, they occurred independently from each 
other, the occurrence of A2 was not affected by the occurrence of A1.

Thus P(A2|A1) =  P(A2). In the example above this could be considered if A1 and A2 
are not sequential days.

Bayesian probability
A probability in the Bayesian framework is interpreted as a degree of belief 

and consequently probabilities are to some degree subjective. This subjectiveness 
is expressed by a combination of one’s belief and the evidence i.e. proved by data 
[Gillies 2000]. Hence the Bayes’ theorem links the degree of a belief in a proposition 
before and after accounting for the evidence. The application of the Bayes’ theorem 
to update beliefs is called Bayesian inference. 

Since the Bayes’s theorem considers a subjective interpretation, the resulting 
probability will alter depending on the state of a belief (subjective) and access to 
the evidence (data) and may lead do different results when evaluating by different 
persons (see the example below). 

Didactical example
Consider a following coin-tossing experiment, taken from Sivia [1996]; one is 

tossing a coin n times. By fair, one would expect to observe heads (or tails) in 50% 
of	all	n	flips	assuming	that	the	coin-tosser	does	not	control	the	initial	conditions	of	
the	flip	e.g.	angular	conditions.	To	express	the	belief	of	a	fair	coin,	 let	denote	the	
bias-weighting by H. Thus, H = 1 and H = 0 can represent a coin which produces 
always a head, a double-headed coin, and a tail, a double-tailed coin, respectively. 

P(A2|A1) =
P(A1∩A2)

P(A1)
or  P(A1∩A2) = P(A1) P(A2|A1) (3.4)

P(A1∩A2) = P(A1) P(A2|A1) = 0.5 × 0.5 = 0.25 (3.5)
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H = 0.5 would represent a fair coin, headed-tailed. A person’s belief will represent 
now the state of knowledge about the coin fairness; how one believes these different 
states of H to be true. This belief will alter in the light of data when the number of 
executed tosses n is increasing. This inference about the coin fairness is summari-
zed by the conditional probability: prob(H|{data}, I). I represents the conditioning 
information as initial information of the coin or the experiment; e.g. that the tosses 
are independent. 

As shown by the example, if only a few data are available, the prior strongly 
influences	the	current	belief	about	the	coin	fairness.	This	effect	vanishes	with	more	
data becoming available. The same effect can be observed in regard to the choice of 
the alternative prior distributions. Different priors have a strong effect on the cur-
rent belief if only a few data are examined. If numerous data are available, different 
priors should lead to the same updated belief. 

The Bayesian subjective interpretation of the probability is in contrast to the 
classical (relative-frequency) approach, where probabilities describe limited relative 
frequencies and therefore are assumed as being objective. Thus, many scientists and 
statisticians feel uncomfortable with the subjective Bayesian approach (Lele, Allen 
2006). In real applications, however, a real objectiveness is almost never obtainable 
due to many (subjective) assumptions which have to be made (Winkler 1996; Gel-
man et al. 2003). Consequently, the objective probability would remain only idealo-
gical (but never reached) and the subjective interpretation of a probability would turn 
into realistic.

3.3.2. Bayesian approach principle 

Bayesian concept 
One of the strengths of the Bayesian approach is its ease to derive the predic-

tive distribution. Accordingly to the Bayes’ theorem, the knowledge about model 
parameters θM is represented as a random variable. The probabilistic assumption 
on θM is expressed by a distribution that describes a subjective belief about their 
values p(θM) which is called as prior distribution or prior. The ’prior’ stresses here 
that a belief is constructed before considering any evidence of data. The information 
contained in (calibration) data (YC) may, however, alter the current belief leading to 
stating the new updated belief called as posterior or posterior distribution, p(θM|YC). 
In the same fashion, any environmental system or model can be also represented by 
a probability distribution based on the belief of its behaviour. This system behaviour 
can be further described by the conditional belief about system observations given 
the parameter values called as likelihood function p(YC|θM).

Framing belief on model parameters
To be applied, Bayesian statistics requires a quantitative formulation of the cur-

rent knowledge. This can be done conceptually by relative frequencies within the pro-
bability theory (Reichert 2012). Relative frequencies are expressed as a proportion of 
all given values in an interval and therefore allow including different degrees of belief. 

The prior remains constant under constant circumstances but strongly depends 
on the familiarity and possessed knowledge of the person which constructs its own 
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belief about the system and therefore may be incomplete. To minimize such sub-
jectiveness,	the	prior	represents	usually	beliefs	of	a	scientists	group	from	the	filed	
of	the	interest,	experts,	instead	of	a	single	person’s	belief.	Thus,	it	reflects	a	current	
state	of	the	scientific	community	knowledge	on	a	certain	issue.	Experts	are	here	di-
stinguished from scientists who conduct and manage the entire uncertainty analysis 
process (e.g. model predictions). Instead, experts are not necessary directly involved 
in the uncertainty analysis but their knowledge may be used on different steps of this 
analysis as for instance to elicit the prior. Using experts’ knowledge leads to results 
that	become	representative	in	term	of	the	current	state	of	scientific	knowledge.

Unfortunately,	eliciting	a	prior	distribution	may	be	difficult	in	hydrology	becau-
se for many scientists or experts it is challenging to express precisely their knowledge 
in	a	probability	fashion	(Garthwaite	et	al.	2005).	Most	of	all,	because	it	is	difficult	to	
visualize parameters of a deterministic hydrological model as continuous probability 
distributions. Also, eliciting a full distribution with which an expert is totally comfor-
table may pose problems for many experts (West 1988). Instead frequencies pose less 
problems	(Lele,	Allen	2006)	and	therefore	in	many	cases	the	prior	is	first	inferred	as	
frequencies and after that transformed to probabilities (Sikorska et al. 2012b).

Learning from the data – Bayesian updating
The principle of the Bayesian inference is to use data to update prior infor-

mation on model parameters (Eq. 3.6). The Bayesian updating may be therefore 
interpreted as a learning process. That is, a transformation from the established prior 
p(θM) to the posterior p(θM|YC).	Formally,	it	reflects	what	have	been	learned	about	the	
assumed a’priori model parameters p(θM) from a consideration of the calibration data 
YC (Gelman et al. 2003): 

The goodness of the learning process depends on assumptions about model 
errors. Typically, a posterior becomes narrower during the learning process. A poste-
rior may become wider if there is an evidence for that in calibration data.

3.3.3. Advantages and disadvantages of Bayesian approach 

Bayesian statistics has been shown to be conceptually more satisfying than 
other approaches of uncertainty analysis in hydrological studies (Mantovan, Todini 
2006; Vrugt et al. 2008a; Yang et al. 2008; Sikorska et al. 2012a). This is namely due 
to following (Gelfand, Smith 1990): 
•	 It provides a natural and constant principled way of combining prior informa-

tion with data. The current knowledge about the model is summarized by the 
prior distribution that is used for future analysis. This prior can be formulated 
i) based on previous studies or short data series and/or local information, ii) 
elicited	 from	 the	 experts’	 knowledge	without	 any	field	 data.	 It	may	 be	 next	
incorporated with available observations (data) leading to the updated know-
ledge – posterior. If new data become available, the previous posterior becomes 

p(θM|YC) =
p(θM) p (YC|θM)

p(YC) (3.6)
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the prior for the next evaluation and may be updated to the new posterior. All 
inferences logically follow the Bayes’ theorem (see Sect. 3.3.1). 

•	 It provides inferences that are conditional on the data and inferred probability 
distributions that are exact. 

•	 It provides interpretable probability distributions with a real probabilistic in-
terpretation because all analysis follows the basic probability axioms. Thus, 
derived uncertainty bands represent truly probabilities and derived parameter 
distributions	reflect	the	real	parameter	densities.	

•	 Derived posterior distributions have to lie within the support of the prior (Eq. 
3.5). This may be particularly useful for inferring nonnegative parameters by 
setting the probability of negative values to zero. 

•	 Bayesian statistics requires an explicit formulation of the error process. This 
error has an interpretation because of transparent assumptions. 

•	 It gives the possibility to separate the sources of uncertainty and following that, 
by assessing their relevance, it allows one to pinpoint where additional steps 
should be taken to reduce the uncertainty and to improve model predictions 
(when possible). 

•	 It allows for models comparison and thus for a model selection (not considered 
in this thesis). 

•	 It	allows	assessing	benefits	of	the	investigation	ahead	of	it;	for	instance	if	a	new	
field	experiment	can	be	used	to	limit	the	uncertainties	in	predictions	or	rather	
another model should be applied. 

•	 It does not necessary require observed output data to provide with probabilistic 
predictions since current prior information already allows to make predictions wi-
thout the need for prior updating. Therefore, if a model, prior and a likelihood have 
been established, the prior parameter distribution can be sampled and correspon-
ding ensemble of predictions can be already given (Wagener, Montanari 2011).
Because of the reasons given above, the Bayesian approach can be also applied in 

basins without long term observations as in SUBs or in generally poorly gauged basins. 
For examples of its application see e.g. Beck and Katafygiotis (1998), Sivia and Skilling 
(2006), Wagener and Montanari (2011), Zhang et al. (2011) or Sikorska et al. (2012a).

Despite many advantages, Bayesian analysis presents some limitations (Gel-
fand, Smith 1990): 
•	 It	requires	a	formulation	of	the	likelihood	which	may	be	difficult	to	formulate.	
•	 There is no unique approved way to elicit a prior. Thus, formulating current 

knowledge in term of probability may be problematic (Scholten et al. 2013). 
•	 Computations may become problematic and costly in time if hydrological mo-

del	is	slow	in	evaluations	because	many	model	runs	must	be	performed	to	find	
the posterior. 

•	 Numerical problems may occur when sampling from posterior distributions 
for obtaining simulations because each time slightly different realizations are 
obtained. As a result of the Bayesian inference probability distributions are de-
rived which are exact. To approximate the predictive distributions of modelled 
output, model parameters usually must be sampled from these distributions. 
These random parameter samples are next used to compute corresponding mo-
del realisations. 
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3.4. Bayesian inference
3.4.1.	Bayesian	learning	−	calibration	of	a	model

Model predictions 
A model response is represented by a probability density function pdf. Predic-

tions of the model M are then formulated as a predictive distribution p(Y) that is calcu-
lated by marginalizing the joint distribution of the parameters and Y (Congdon 2003). 

 Where p(Y|θM) is the likelihood function which is proportional to the probabi-
lity that the observations could have been derived by the parameter set θM

i (Congdon 
2003). Thus, the likelihood assesses the probability of observing data arising from 
the assumed hypothesis which is represented by candidate model parameters θM

i.

Bayesian learning 
A prior belief on model parameters p(θM) is formulated without accounting for 

any evidence in calibration data. This evidence in a hydrological model M is repre-
sented by the observed data (output) YC: 

 The principle of Bayesian learning from data YC (also Bayesian inference), 
described in Sect. 3.3.2, is to improve current beliefs (knowledge) represented by 
p(θM) to the new (updated) current beliefs which now become posterior beliefs 
or in terms of probability – posterior distribution of parameters. This posterior is 
a combination of the prior knowledge and the data and the likelihood function. 
This posterior is represented as a conditional probability of obtaining θM given the 
data YC so as p(θM|YC). According to the Eqs. 3.6 and 3.7, the belief on θM becomes 
(Congdon 2003): 

 Because ∫	p(YC|θM) p (θM)dθM is	difficult	 to	evaluate,	usually	the	proportional	
relationship	is	sufficient	for	the	probability	approximation:

 Accordingly to the Bayes’ theorem (Eq. 3.6), the posterior distribution of the model 
predictions in Eq. 3.7 will become now, after having observed data (Gelman et al. 1996): 

 Where p(θM|YC) is a posterior distribution of parameters. 

p(Y) = ∫ p(Y|θM)p(θM)dθM (3.7)

Y C = {Y 1, Y 2,..., Y n} (3.8)

(3.9)p (θM|YC) =
p (θM) p (YC|θM)

p(YC) =
p (θM) p (YC|θM)

∫ p (YC|θM) p (θM)dθM

p(θM|YC)	∞	p(θM) p (YC|θM) (3.10)
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 3.4.2. Posterior analysis 

Marginal distributions 
Comparing the estimated posterior distribution of model parameters p(θM|YC) 

with the prior p(θM) gives an estimate of what have been learnt form the calibration 
data (YC) (see Sect. 3.3.1). The prior is usually expressed as standard pdf for which 
characteristic values such as a mean or a standard deviation can be derived and the-
refore the prior may be described in terms of mathematical equations. The posterior, 
however, usually does not result in a standard distribution and thus cannot be captu-
red in the form of simple mathematical equations. Therefore, a comparison of prior 
and posterior can be practically assessed by graphical analysis while both pdfs are 
plotted together (Reichert 2011), see the example in Fig. 3.3.

The analysis of pdfs aims at assessing the gain of the information contained 
in data. This is usually assessed by two factors: a pdf width reduction and a shift of 
posterior towards prior pdf. Generally, if the posterior becomes narrower than the 
prior, the learning process was successful. Opposite, the posterior wider than the 
prior	indicates	that	the	prior	was	too	confident	(too	narrow)	for	the	information	con-
tained in the data given the model. The posterior similar to the prior states that there 
was	no	gain	of	information	from	the	data	content.	This	may	lead	to	the	identifiability	
problem	(Sect.	2.1.1).	A	significant	shift	of	the	posterior	marginal	towards	the	prior	
states about the relevance of the learning process. 

Parameters correlations 
The posterior contains information on mutual correlations between model pa-

rameters θM. This means that, even if for the prior independence between all para-
meters is assumed, the posterior will contain dependencies between the parameters. 
The correlation between parameters can be assessed graphically by plotting posterior 
samples for all parameters against each other as a scatter plot.

Fig. 3.3. Example of prior (dark solid line) and posterior (gray polygon) PDF for basin area (Ac)
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 3.4.3. Measure of predictive uncertainty 

Residuals analysis 
Model residuals, prediction errors, represent the difference between a predic-

ted and an observed variable. The analysis of model residuals allows one to assess 
in how far the statistical assumptions underlying the introduced error model are 
fulfilled.	This	analysis	should	absolutely	precede	the	analysis	of	derived	predictive	
distributions,	 because	 only	 if	 the	 statistical	 assumptions	 are	 fulfilled,	 the	 derived	
uncertainty may be considered as meaningful.

It is sensible to evaluate the residuals at the maximum of the posterior, i.e. 
mode: p(Ỹ ) (e.g. Reichert 2011). p(Ỹ ) is the most likely model prediction which can 
be	interpreted	as	the	best	model	prediction	and	that	would	represent	the	best	fit	in 
a traditional deterministic approach. Usually, the residual analysis is performed du-
ring the calibration while predictive distributions are checked in the model validation.

Confidence	and	prediction	intervals	
To quantify the uncertainty of model predictions i.e. p(Y), it is useful to compute 

the highest probability density regions. These can be computed as uncertainty bands 
expressed	between	the	upper	and	lower	uncertainty	limits,	which	are	defined	as	the	
prediction intervals (PIs) (Shrestha, Solomatine 2006). PIs usually refer to model 
predictions computed for future events, in validation. In the same fashion, PIs may be 
computed for model simulations in calibration period. In some application, it is useful 
to	compute	the	confidence	intervals	or	creditability	intervals	(CIs)	which	represent	
the uncertainty only due to the parameter uncertainty of a deterministic model. PIs 
are wider than CIs because they consider additionally input and output uncertainties. 

PIa	and	CIa	may	be	approximated	by	quantile	ranges,	typically	as	(100	−	ψ)% 
where ψ	defines	a	range	of	the	prediction	intervals	(Congdon	2003).	Then	PIs	or	CIs	
are	defined	as	bands	between	lower	and	upper	limits	that	correspond	to	(ψ/2)% for 

Fig. 3.4. Uncertainty intervals; Yo is observed variable, Y is predicted variable, 
p(Y(100	−	ψ)%)	are	(100	−	ψ)% – predictions interval, Y(ψ/2)% and Y(100	−	ψ/2)% 

are lower and upper limits respectively, Y(50)% is the prediction median
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lower and (100 – ψ/2)% for upper limits (Fig. 3.4). Typically, PIs or CIs for 95% or 
90% are computed. The 95% uncertainty bands provide with bands within which 
a predicted variable falls with 95% probability. 

To summarize the predictive capability of the model, usually two uncertainty 
metrics are estimated (Montanari, Koutsoyiannis 2012; Del Giudice et al. 2013): 
i)	data	coverage	and	ii)	sharpness.	The	first	one	indicates	how	many	percent	of	the	
observation data are covered by the PIs or CIs. The closer (or greater) the percent 
of	data	coverage	to	the	(100	−	ψ)% value is, the more reliable such PIs can be con-
sidered. For instance, for 95%-PIs the coverage of data should be ideally equal or 
higher than 95%. The sharpness measures the average width of the PIs. Ideally, the 
narrower	bands	are,	the	more	useful	they	are.	However,	the	bands	have	to	still	fulfill	
condition i) to be considered as reliable.

3.4.4. Model prediction performance 

Because future events cannot be known, it is a common practice to assess the 
model performance by splitting the available data into two sets i.e. calibration and 
validation periods. Thus, a model is usually calibrated using part of all data and 
validated on the remaining data points, e.g. 10% or 20% (e.g. Haddad et al. 2013).  
Splitting data into two datasets requires enough observation data for both datasets. 
If the available data is limited or in case of event-based modelling, it is a standard 
practice to use a cross-validation instead. In general, this technique uses a (random) 
part of data set to calibrate model and the remainder to validate it (e.g. Haddad et al. 
2013). Next, the procedure is redone for different parts of data so that the validation 
is executed for the whole data set. One of mostly applied cross-validation techni-
ques is a leave-one-out cross validation method (e.g. Wang, Robertson 2011). This 
method uses all data set apart from a random single event (dataset) to calibrate the 
model and the remaining event to validate the model performance and is especially 
useful in event-based modelling. The leave-one-out cross validation method can be 
summarized in following steps:
1. select a single event from all k available;
2. use remaining events to calibrate the model;
3. validate model on the event that was not used for the calibration;
4. repeat steps 1-3 k-times so that each event is used to validate the model.

3.4.5. Predictive uncertainty decomposition 

From Eq. 3.6, model predictions p(Y) depend on pdf of model parameters p(θM). 
Treating all model parameters as a single vector θM is convenient if only the predic-
tive distribution p(Y) is of interest. However, one may be interested in knowing how 
the uncertainty of a particular model parameter denoted as θMj contributes to the total 
p(Y). In other words, how sensitive is the model and model predictions to changes 
in values of the θMj (Saltelli et al. 2000). To this end, the computed predictive di-
stribution may be conditioned on θMj (Christensen et al. 2011) giving conditional 
distribution p(Y|θMj ).
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In practice, it can be achieved by keeping θMj at the maximum of the posterior 
marginals (mode) and letting other parameters to vary within derived posteriors. 
Remaining parameters are then sampled from the posterior distribution conditional 
on the maximal posterior marginals of those parameters that are kept constant. So 
the Eq. 3.7 becomes: 

Where θMj is the mode of the p(θMj), p(Y|θM) is the likelihood, p(θM-[Mj]) is the 
parameter distribution when excluding the θMj parameter. 

By comparison with the full predictive distribution, one can indicate the rela-
tive importance of its components. Such a comparison of prediction uncertainty is 
preferable because it takes into account mutual parameters dependencies included 
in	the	posterior.	In	regard	to	hydrological	flooding	studies,	it	is	more	interesting	to	
evaluate the importance of different uncertainty sources rather than the uncertainty 
arising from individual model parameters. Conceptually, Eq. 3.12 can be extended to 
assess contributions of parameter groups. To do so, a vector θM may be decomposed 
into its sub-vectors as: θM = (θMI, θMII,..., θMZ). Where θMI, θMII,..., θMZ represent now 
Z parameter subsets. The contribution of a particular sub-vector into the total p(Y ) 
may be then evaluated by conditioning the total predictive distribution on each of 
these sub-vectors.

3.5. Uncertainty consideration in hydrological modelling 
3.5.1.	Description	of	the	model	structure	deficits

Gaussian error model 
The classical assumption on E in Eq. 3.3 is that the model error is represented 

by a Gaussian error. This means that model residuals (see Sect. 3.4.2) are indepen-
dent and identically (normally) distributed (i.i.d.) random variables with a mean of 
zero (Reichert 2011): 

Such an error term is usually introduced to lump together all uncertainty in hy-
drological modelling i.e. input, structural and output uncertainty. It is also usually as-
sumed that E is constant over the time so that current model residuals do not depend 
on model errors observed in the past. This assumption is mathematically convenient 
and easy to implement and therefore has been widely used in applied hydrology 
(Yang et al. 2007). Unfortunately, this assumption was shown to be often violated in 
hydrological modelling since residuals of hydrological models are usually strongly 
auto-correlated (e.g. Romanowicz et al. 1994; Kuczera et al. 2006; Sikorska et al. 
2012a, b; Wang et al. 2013). Intuitively, the residual autocorrelation is in an agre-
ement with a RR process within a basin and can be explained by a basin memory 
effect due to current hydrological conditions. Therefore, model errors are expected 
to strongly depend on previously observed errors. 

(3.12)p(Y|θMj) = ∫	p (YC|θM) p (θM-[Mj]) dθM-[Mj]~

~

E(ti) ~ N(µE, σE) where µE = 02 (3.13)
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Lumped autoregressive error model 
A promising alternative is a lumped continuous-time autoregressive error mo-

del (LEM), e.g. Brockwell, Davis (1996), Brockwell (2001), Yang et al. (2007), 
which is based on more realistic assumptions but has not been widely recognized so 
far (Del Guidice et al. 2013, Sikorska et al. 2012a). The LEM is especially useful to 
analyse	time	series	e.g.	streamflow	data.	It	takes	more	justifiable	assumptions	than	
the Gaussian error model since it assumes that model residuals in the future intervals 
depend on the residuals that were already observed before. Residuals of the LEM 
are sometimes called as innovations. The relation between residuals of the LEM and 
Gaussian model is as follows:

The LEM has two parameters: an asymptotic standard deviation (σI) and a cha-
racteristic correlation time of an error process (τ). The asymptotic standard deviation 
is described as:

 Where σE is a standard deviation of the error process E from Eq 3.13. If 
a time difference between observations (ti −	ti−1) is large comparably to τ, than σI = σE. 
If τ = 0, no correlation is assumed and LEM process becomes the independent Gaus-
sian error as in Eq. 3.13. The LEM is continuous in time and therefore can also han-
dle missing or irregularly spread data. 

Such	a	LEM	error	model	is	sufficient	to	model	the	total	predictive	uncertainty	
(PU). However, if contributing sources are of interest, a separate treatment of uncer-
tainty sources is recommended in order to quantify their contribution to the predicti-
ve uncertainty, see Sects. 3.5.2-3.5.3. 

Variable transformation 
Because in practice it is easier to deal with normally distributed errors, it is 

a common practice to apply a transformation function on variables (Yang et al. 2008; 
Wang et al. 2009; Sikorska et al. 2012a; Del Giudice et al. 2013; Honti et al. 2013). 
Thus, both variables can be transferred into the appropriate transformed space where 
transformed model errors can be assumed as i.i.d. and thus easier stabilized (Wang et 
al. 2013). This is particularly useful in hydrological modeling when the errors incre-
ase	during	high	flow	conditions	(Del	Giudice	et	al.	2014).	A	transformation	function	
can be denoted as g; called also as a forward transformation. The transformed varia-
ble can be then written as:
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Where y and z are a variable and its transformed form respectively. Model er-
rors E are modelled then as an additive random process to transformed modelled 
variables z. After adding the random error to the transformed results, a backward 
transformation (g−1) is needed to the original scale for comparison with data (Yang 
et al. 2007, 2008): 

 Where y is the outcome of the deterministic hydrological model. The transfor-
mation functions g and g−1 are described by transformation parameters. Such para-
meters	give	degrees	of	freedom	to	improve	the	fulfillment	of	statistical	distributional	
assumptions on model errors. The most widely used in hydrological modelling is the 
box-cox transformation in its one-or two-parameter forms (Yang et al. 2007; Wang 
et al. 2012), see Sect. 3.7. The two-parameter Box-Cox transformation is especial-
ly useful to deal with possible zero-values for a modelled or observed variable. If 
a variable takes non-zero values, the two-parameter Box-Cox transformation may 
be	simplified	to	the	one-parameter	form.	Alternatively,	other	transformations	can	be	
applied as e.g. Log-sinh transformation (Wang et al. 2012). The aim here is to use 
a transformation function that will allow one to normalize residuals and stabilize er-
ror variances. Usually preliminary analysis is required to evaluate different functions 
in order to choose the best transformation parameters.

3.5.2. Model parameter uncertainty 

Formally, all model parameters can be captured into a single vector θM : θM = 
{θM1, θM2,..., θMn}, see Sect. 3.1.2. Thus, the uncertainty on the model parameters 
is accounted for by representing their values as a joint probability density func-
tion (pdf): p(θM). p(θM) represents the prior, pdf established before considering data 
at hand, whereas p(θM|YC) represents the posterior, prior updated with data. By the 
prior, p(θM), it is assumed that model parameters are independent (Christensen et al. 
2011) and therefore usually pdfs of each θMi are derived separately. Although, it is 
not always the case, numerically it is convenient to evaluate and therefore common-
ly applied in practice (e.g. Yang et al. 2007; Reichert, Schuwirth 2012; Honti et al. 
2013). The computed posterior p(θM|YC), however, always contains mutual interac-
tions between model parameters. 

3.5.3. Input error model of precipitation 

Usually in hydrological models, the model input X from Eq. 3.3 consists of in-
put precipitation Px. Px contains errors mostly due to areal averaging and an inabili-
ty to accurately capture a real precipitation which is spatially and temporally diverse 
(see Sect. 3.2.4). These errors cannot be known because the real precipitation is not 
measured. This uncertainty of input precipitation is modelled as proposed by Kavet-
ski et al. (2006a, b). The input precipitation is tackled for each storm event with an 

z = g (y) (3.17)

Y = g–1 (z+E) = g–1 (g(y)+E) (3.18)
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individual rainfall multiplier marked as ζj as illustrated in Fig. 3.5. For each rainfall 
event	a	unique	multiplier	is	required	because	the	accuracy	of	capturing	rainfall	fields	
may change from one to another rainfall event due to diverse characteristics of each 
rainfall, e.g. spatial and temporal variability, rainfall intensity. The product of ζj and 
the input precipitation Px marked as Pζx is then used as an input into the model in-
stead of directly observed input rainfall Px. 

The rainfall multipliers cannot be known precisely beforehand. A priori, each 
ζj can be thus represented by the same probability distribution p(ζ). A vector ζ con-
sists of all multipliers ζ={ζj1, ζj2,..., ζjk} and can be further described as a random 
variable with an expected value of µζ and a standard deviation of σζ. These both 
parameters are integrated into a vector θζ and prior uncertainty is described as p(θζ). 
Intuitively, an expected value of rainfall multiplier may be assumed as one. This is 
reasonable because if the error of a rainfall measure would be known in advance, 
observed input rainfall should be directly corrected before modelling.

This rainfall multipliers approach has been proved to lead to a better performan-
ce of a hydrological model and parameter estimation (Kavetski et al. 2002). Howe-
ver,	it	is	only	suitable	for	event-based	modelling.	The	method	becomes	insufficient	
for continuous modelling because it requires a separation of observed data into 
rainfall events what is not always straightforward. Moreover, rainfall multipliers 
must be inferred together with θM during the calibration. Thus, the number of para-
meters to be now calibrated increases with the number of analysed events (k). 

3.5.4. Consideration of calibration data uncertainty 

The uncertainty in calibration data for rainfall-runoff models (output uncertain-
ty)	is	considered	by	acknowledgement	of	the	uncertainty	in	observed	streamflow	Qo. 

Fig. 3.5. Idea of the rainfall multipliers approach; Px	−	observed	rainfall,	ζj	−	rainfall	multiplier	for	
the j-th event, Pζx	−	inferred	observed	rainfall	after	including	rainfall	multiplier	ζj, j	−	index	of	the	

rainfall event, j = 1, 2,..., k, k	−	number	of	analysed	rainfall	events

Methods	−	Bayesian	uncertainty	analysis	in	SUB42

monography.indd   42 2014-10-08   09:01:19



As stated in Sect. 3.2.4, Qo is usually indirectly measured by converting a measured 
water	level	into	„observed”	streamflow	Qo usually by the use of a water level-runoff 
model that typically is a rating curve (RC). A standard RC is a power law equation 
and has three empirical parameters which can be closed in a vector θRC = {θRC1, θRC2, 
θRC3}. These parameters cannot be known precisely (Sect. 3.2). The uncertainty in 
θRC is considered by p(θRC). This uncertainty propagates through the RC model and 
is further mapped onto estimated Qo. Thus, p(θRC) may describe the uncertainty of 
calibration data for RR models.

3.6. Example of uncertainty analysis application to SUB

In this Section the usefulness of the proposed uncertainty analysis is demon-
strated	on	two	practical	examples,	in	which	water	level	and	streamflow	in	SUB	are	
modeled, see Tab. 3.1. These two cases are complementary to each other and they 
together	 focus	 on	 estimating	 the	 PU	 in	 SUBs	 for	 flood	 risk	 studies.	 Specifically,	
within	the	example	I	(Sect.	3.6.1),	the	uncertainty	in	streamflow	predictions	and	the	
contribution of the input (typically mean areal precipitation) and hydrological model 
parameter uncertainty to the total predictive uncertainty are evaluated. The input 
uncertainty is modelled explicitly by rainfall multipliers approach (Sect. 3.5.3). The 
uncertainty of water level predictions and the importance of the output uncertainty 
to the total PU are evaluated within the example II (Sect. 3.6.2). The output uncer-
tainty describes the uncertainty in calibration data for RR models, which is typically 
derived with RC (Sect. 3.5.4).

3.6.1.	Example	I	–	uncertainty	of	streamflow	predictions	

The	first	example	illustrates	a	traditional	approach	in	RR	modelling	when	ma-
king	 predictions	 for	 future	 (unknown)	 events.	To	 this	 end,	 the	RR	model	 is	 first	
calibrated	 against	 past	 recorded	 rainfall-streamflow	data	 and	next	 used	 to	predict	
streamflows	in	response	to	some	assumed	rainfalls.	Thus,	in	this	example	two	uncer-
tainty aspects are evaluated: 
•	 the total uncertainty of RR model predictions; 
•	 contribution of uncertainty sources (input vs. RR parameters). 

The assumption made here are as follows. Measurement errors of the calibra-
tion	 data	 for	 the	RR	model	 (typically	 streamflow),	 ε	 in	Eq.	 3.2,	 are	 significantly	

Table 3.1
Focus of the predictive uncertainty analysis in two application examples

Application 
example

Uncertainty treatment
Focus of UA

Structurea) Parametric Input Output
I O X X O Input
II O X O X Output

UA – uncertainty analysis. a)	model	structure	deficits	are	implicitly	modelled	by	the	LEM;	x	indicates	the	uncertainty	
explicitly acknowledged, whereas o illustrates an implicit treatment of the uncertainty; lumped jointly into LEM
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smaller than other uncertainty sources. This can be assumed when a measure of the 
observed	streamflow	is	said	to	be	precisely,	e.g.	due	to	special	efforts	put	into	a	ma-
intenance	of	the	equipment,	calibration	and	verification	of	data.	This	is	a	common	
practice	in	hydrological	modelling	that	uses	streamflow	data	to	calibrate	RR	models.	

Given that, uncertainty sources are explicitly modeled by:
•	 Uncertainty of RR model parameters by p(θRR) as described in Sect. 3.5.2. 
•	 Input uncertainty is treated separately from the model bias B (Eq. 3.1) by tac-

kling input precipitation Px with rainfall multipliers (ζ) of which uncertainty is 
described by θζ (see Sect. 3.5.3).

•	 Measurement	error	of	streamflow,	ε, is lumped together with the model structu-
re	deficits	to	a	single	error	term	represented	now	by	Em. Note that this error is 
marked as Em in order to distinguish it from E which lumps also input uncer-
tainty (see Eq. 3.2). Em is described by LEM with parameters θLEM. To account 
for autocorrelated and not normally distributed errors of hydrological RR mo-
del, a likelihood function that combines the LEM with a Box-Cox transforma-
tion (see Sect. 3.5.1) is implemented as developed by Yang et al. (2007, 2008). 
Treating input error explicitly allows one to assess weights of input vs. model 

parameter uncertainty at the next stage. To this end, an additivness of different un-
certainty sources is assumed (Sect. 3.4.5).

Stochastic modelling of RR input 
Input precipitation into RR model Pζx is modelled by correcting the observed 

input precipitation Px with rainfall multipliers ζ, see Fig. 3.6 (also Sect. 3.5.3). Thus 
Px is described as:

 R is the input rainfall error model. ζ is modelled as a random variable of which 
probability is obtained by marginalising the joint probability distribution of input 
error model parameters i.e. θζ and ζ: 

 Stochastic modelling of rainfall-runoff (RR) 
The	real	streamflow	Q is modelled as a sum of a deterministic RR model output 

q and an error term. This could be formalised accordingly to Eq. 3.3 as:

 Where q(Px,θRR) is a deterministic output from the RR model and E(θLEM) ac-
counts for model bias B (with input uncertainty) and measurement errors ε, compare 
with Eq. 3.2. Eq. 3.21 may be suitable if only the total PU is searched for. However, 
if the input uncertainty contribution is of interest, it must be explicitly acknowledged 
and separated from E(θLEM): 

Px = Px · ζ = R(Px, θζ )ζ (3.19)

p(ζ) = ∫	p(ζ ǀ	θζ ) p(θζ )d(θζ ) (3.20)

Q = q(Px, θRR ) + E(θLEM ) (3.21)

Q = q(R(Px, θζ ), θRR) + Em(θLEM ) (3.22)
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Where R(Px,θζ) = Px
ζ, see also Fig. 13. Em(θLEM) lumps now only model structure 

deficits	and	measurement	errors,	while	input	uncertainty	is	represented	by	θζ accor-
ding to Eq. 3.19. A practical form and a magnitude of Em cannot be known ahead 
and thus it must be assumed a priori, see Sect. 4.3 for practical recommendations. 
Availability of recorded data (QC

o) gives one the opportunity to update Em during the 
Bayesian inference. 

Predictive uncertainty of Q
The probability distribution of the model output p(Q) from Eq. 3.22 depends 

now also on θζ . In the same fashion, the likelihood function of the model output 
depends on θζ and is calculated as a joint distribution of the likelihood for the input 
error model p(ζ |θζ) (Eq. 3.20) and the likelihood for the RR model p(Q|θRR ,θLEM ,θζ ):

 For the notation simplicity and if only the total uncertainty analysis is of inte-
rest, all parameters are combined together into a single vector θI as θI = {θRR; θLEM; 
θζ}. Superscript I refers to the number of the application example. The uncertainty 
in θI is represented by p(θI). Thus, p(Q) can be evaluated by marginalizing the joint 
distribution of Q and all parameters (Sect. 3.4.1):

where p(Q,ζ |θI ) is the likelihood of Q (compare with Eq. 3.23). 

Fig. 3.6. Error model of the input uncertainty (R) and stochastic rainfall-runoff (RR) model; 
j	−	j-th rainfall event, j = 1, 2,..., k, k	−	number	of	rainfall	events,	Px, j −	observed	rainfall	for	j-th event, 
Pζ

xj	−	observed	rainfall	for	the	j-th event after including rainfall multiplier ζj, θRR	−		parameters	of	the	
RR model, θζ	−	parameters	of	the	ζ, θLEM	−		parameters	of	the	LEM	model,	j	−	modelled	streamflow	
for j-th event, Em	−	error	term	for	j-th event, Qj −	real	streamflow	for	j-th event, t	−		time	(over	every	

event); dashed lines pinpoint error locations; bold font indicates a vector

p(Q, ζ ǀθRR, θLEM, θζ ) = p(Q ǀθRR, θLEM, θζ ) p(ζ ǀθζ) (3.23)
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Uncertainty contribution
An explicit treatment of diverse uncertainty sources in Eq. 3.24 allows one to 

assess how the total PU p(Q) is dominated by its contributing sources. Thus, Eq. 3.24 
can be rewritten as:

To this end, an uncertainty analysis as described in Sect. 3.4.5 is undertaken in 
which either ζ or θRR are kept constant at their modes. For instance, assessing input 
uncertainty contribution would result in the following distribution: 

Where ζ and θζ refer to the best estimate (mode) of rainfall multiplier and its 
parameters for a particular rainfall event.

3.6.2. Example II – uncertainty in water level predictions 

Introduction – problem in calibrating RR model 
To improve model predictions, the RR model from Eq. 3.21 can be calibra-

ted against recorded data that is typically QC for the RR. The calibration is usually 
complicated by the fact that the output of the RR model (Q) is not measured directly 
and must be derived from measured water levels LC with help of another model (see 
Fig. 3.7 and Sect. 3.2.4). Consequently, a standard RR model calibration procedure 
consists of following steps (Sikorska et al. 2013):

1. A water level Loi	 is	measured	directly	and	a	streamflow	Qoi indirectly e.g. by 
hydraulic measurements (see Sect. 3.2.4) for few temporal measured conditions.

2. Based on these temporal relations Loi – Qoi a water level-runoff model (LR) that 
relates	streamflow	to	the	observed	water	level	is	constructed:	
 where θLR is a parameter vector of the LR model and ELR is the error term of the 
LR model and compensates here for all errors of the method (see Sect. 3.2.4). 
Usually it is assumed that ELR is normally distributed around zero mean.

3. LR	is	calibrated	to	match	the	measured	temporal	streamflow	records.	
4. LR	established	on	the	step	3	is	next	used	to	obtain	continuous	streamflow	data	

based on measured continuous water levels Lo using the best approximation of 
model parameters θLR and while neglecting ELR: 

5. computed at the step 4 are next used as QC to calibrate the RR model. This can 
be formalized by comparing QC and Q from Eqs. 3.28 and 3.21:

p(Q ) = ∫∫∫∫	p(Q, ζ ǀθRR, θLEM, θζ ) p(θRR, θLEM, θζ)dθRR dθLEM dθζ dζ (3.25)

(3.26)p(Qǀζ) = ∫∫∫∫	p(Q, ζ ǀθRR, θLEM, θζ ) p(θRR, θLEM, θζ)dθRR dθLEM dθζ dζ
~ ~ ~ ~

~ ~

Ԛ = LR(Lo, θLR) + ELR
̭

(3.27)

(3.28)Ԛ = LR(Lo, θLR)~

Q(Lo, θLR) = q(Px, θRR) + E(θLEM) ~ ~ (3.29)
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The	described	procedure	might	be	useful	to	obtain	the	’best	fitting’	parameters	
for the RR model (θRR). However, it has two conceptual drawbacks as for the uncer-
tainty	analysis	of	streamflow	predictions.	Namely,	i)	the	error	term	of	the	LR	model	
ELR is ’lost’ at the fourth step of the procedure and never ’seen’ by the RR model; ii) 
the uncertainty in θLR is neglected. Even though, due to the error propagation, when 
RR	model	is	calibrated	against	the	average	streamflow	QC, computed with θLR, E will 
contain also the uncertainty of the LR model so the ’lost’ ELR. 

Uncertainty analysis of water level predictions 
In the example I (Sect. 3.6.1) it was assumed that the uncertainty in the cali-

bration data for the RR model are much smaller than other uncertainty sources. Ho-
wever,	as	showed	in	Sect.	3.6.2,	this	uncertainty	may	be	significant	if	the	calibration	
data	for	RR	models	consist	of	streamflows	derived	from	water	levels	usually	with	
the use of a simple water level – runoff model which is typically a rating curve (RC). 
Therefore, the example II by directly modelling water levels with the runoff-water 
level (RL) model assess: 
•	 the total uncertainty of RL model predictions; 
•	 relevance of the output uncertainty by comparing RR vs. RC parameter uncertainty. 

~
~

Fig. 3.7. Representation of the rainfall-runoff (RR) model calibration problem. Dashed lines pin- 
point location of possible errors. Random quantities are shown in ellipsoids, deterministic in squares. 

Notation: P, Q, L	represent	real	precipitation,	streamflow	and	water	level;	Po, Qo and Lo represent 
observed variables; Px is input precipitation into RR model; Qoi	represents	measured	streamflow	

records for LR calibration; Q̂  is	streamflow	modelled	with	water	level-runoff	(LR)	model;
q̂	is	streamflow	modelled	with	RR	model;	θRR – RR model parameters

θLR – LR model parameters; bold font indicates vectors
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The assumptions made here are that water levels are modelled in two steps by 
RL model which consists of two submodels RR and RC, see Fig. 3.8. Measurement 
errors of water level for the RL model, ε	in	Eq.	3.2,	are	significantly	smaller	than	
other uncertainty sources (see also Sect. 3.2.4). 

Explicitly modelled uncertainty sources: 
•	 Uncertainty in RL model parameters are explicitly described by RR and RC 

sub-model parameters as p(θRR) and p(θRC). RC refers to the rating curve.
•	 Input uncertainty is treated together with structural model uncertainty represen-

ted by model bias B (Eq. 3.2). 
•	 Measurement error of water levels, ε, is lumped together with B to a single 

error term E, which is described by the LEM parameters θLEM (Sect. 3.5.1). 
A likelihood function which combines the LEM with a Box-Cox transforma-
tion is used to account for autocorrelated and not normally distributed errors of 
the RL model. 
Treating RR and RC model parameters separately allows one to assess weights 

of RR vs. RC parameter uncertainty at the stage 2 and thus the relevance of output 
uncertainty for RR models. 

Stochastic modelling of rainfall-water level (RL) 
The real water level L is modelled as a sum of a deterministic RL model output 

l and an error term E accordingly to Eq. 3.2, see also Fig. 3.8: 

Fig. 3.8. Representation of the rainfall-water level (RL) model. Dashed lines pinpoint location of 
possible errors. ˆl is water level modelled with RL model. Other notation as in Fig. 3.9
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where θRL is a vector with RL model parameters (θRL = {θRR;θRC}). Although, concep-
tually similar to the RR transformation, this process usually is not straightforward to 
model	because	it	involves	an	internal	state	of	streamflow	q that in such description 
is not modelled directly (Fig. 3.8). Therefore, in practice, RL consists of two submo-
dels:	rainfall-runoff	and	runoff-water	level.	The	first	part	consists	of	the	RR	model	
as described in Eq. 3.21, while the second one usually is modelled by the inverse of 
a LR model from Eq. 3.27 and thus noted as LR−1: 

where the error term E lumps input uncertainty, measurement uncertainty of L and mo-
del	structure	deficits	of	both	sub-models	RR	and	RL−1. Because E cannot be known in 
advance it must be assumed a priori. Availability of recorded data (LC) makes it possi-
ble to estimate E by means of the Bayesian inference. Note, however, that q is now an 
internal state of the RL model and is not modelled directly. Thus, a calibration process 
only	leads	to	a	better	fit	of	l to L without considering a match of q to Q (Fig. 3.10). 
Consequently, inferred parameters of RR submodel most likely will not be identical 
with the parameters of RR model when the RR model is calibrated alone (Sect. 3.6.1). 

Predictive uncertainty of L 
To assess the PU of L, all parameter vectors i.e. θRR, θRC and θLEM are combined 

together to the θII; θII = {θRR; θRC; θLEM}. Superscript II refers to the number of ap-
plication example. Then, the probability distribution of the LR model output can be 
described by marginalizing the joint probability distribution of L and all parameters: 

where p(L|θII) = p(L|θRR, θRC, θLEM).

Uncertainty contributions 
By an explicit acknowledgement of both parameters θRR and θRC in Eq. 3.32, 

their contribution to the total PU may be addressed by means of the sensitivity ana-
lysis when either θRR or θRC are kept constant at their maximal probability values 
(modes). For assessing the RC contribution, p(L) results in a following distribution:

 3.7. Implementation 
3.7.1. Implemented likelihood function

The likelihood is strictly required in the Bayesian inference in order to explore 
a	defined	prior	and	to	deliver	 the	predictive	distribution	of	 the	model.	Likelihood	
(function) describes the pdf of observing the data Y given the model M and model 

L = l (Px, θLR) + E (θLR) (3.30)

L = LR-1 (q(Px, θRR), θRC) + E (θLEM) (3.31)

p(L) = ∫	p(L|θII) p(θII) dθII (3.32)

(3.33)p(L|θRC) = ∫∫∫	p(L|θRR, θRC, θLEM) p(RR, θRC, θLEM) dθRR dθRC dθLEM~ ~ ~ ~
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parameters θM as p(θM). Then for each candidate parameter set θMi	from	the	defined	
prior parameter space p(θM) a likelihood p(Y|θM) for given observations Y can be 
computed. A value of the likelihood function is proportional to the probability that 
the observations could have been generated by the parameter set θMi i.e. p(Y|θMi) 
(Congdon 2003).

In combination with the transformation function g, the following likelihood 
function results (Yang et al. 2007, 2008; Sikorska et al. 2012a, 2013):

where yo;t is an observation and yt(θM) is a simulated model response at time t. Note 
that this form of the likelihood is valid for different transformations and only trans-
formation functions g and g-1 change. 

For	estimation	of	rainfall	multipliers	an	explicit	likelihood	must	be	defined	and	
is given in Eq. 3.35.

where i is the number of rainfall multipliers (and rainfall events).

3.7.2. Box-Cox transformation

A general (two-parameters) Box-Cox transformation (Box-Cox 1964, 1982; 
Yang et al. 2007; Sikorska et al. 2012a) can be written as:
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where y is the system outcome (observed Y or modelled y), z is a forward transfer-
red system outcome. λ1 and λ2 are Box-Cox transformation parameters. Note that 
g includes the identity (λ1 = λ2 = 1) and a log-transformation (λ1 = λ2 = 0) as special 
cases. The two-parameters Box-Cox transformation is especially useful to deal with 
possible zero-values for a modelled or observed variable. Thus, λ2  is set to non-zero 
value. Thus, not y but y + λ2 must be grater than zero. In addition, z must be larger 
than zero for all values of z. If a variable takes non-zero values, the two-parameters 
Box-Cox	transformation	may	be	simplified	to	the	one-parameter	form	by	setting	λ2 
to zero. So the one-parameters Box-Cox transformation can be written as:

3.7.3. Uncertainty analysis and uncertainty bands

Bayesian uncertainty analysis can be easily implemented in R programming 
language (R Development Core Team 2011), which is an open-source and thus is 
competitive to the other paid programming languages. Computation of the posterior 
uncertainty bands requires numerical implementation which allows for evaluating 
the	likelihood	function.	In	practice,	this	is	extremely	difficult	but	there	are	currently	
available algorithms that allow approximating the posterior by sampling from it. To 
this end, Monte Carlo Markov Chain (MCMC) algorithms can be easily adapted. 
Currently, there are a few practical algorithms available which allow one for a suf-
ficient	sampling.	One	of	those	is	the	generic	adaptive	MCMC	algorithm	proposed	
by Haario et al. (2001) and implemented by Vihola (2012) based on the Metropolis 
sampling (see below). These samplers adjust the covariance matrix of the jump di-
stribution	of	searched	parameters	to	achieve	a	defined	rejection	rate	and	thus	guaran-
tees	efficient	sampling	and	fast	posterior	convergence.
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Markov Chain Monte Carlo (MCMC) sampling
The most popular are Markov Chain Monte Carlo methods (MCMC) that sam-

ple repeatedly from the joint posterior of all parameters. The sampling is evaluated 
by creating a random walk (Markov Chain) through the search space of the parame-
ter distribution based on the a’priori assumption pdf(θ) (Vrugt et al. 2008b). This 
means that to every position within the whole parameter space there is assigned 
a unique pair of parameter values. To explore this space, MCMC generates a trial 
of move (υ) based on the present location (ωt−1). This trail u is either accepted or 
rejected depending on chosen from a parameter space values (see Fig. B.2). For the 
associated parameter values with this trail υ the model is run and for its response the 
likelihood function is evaluated and compared with the likelihood for observations. 
The difference between both is called a likelihood value Le and is a function that 
quantifies	how	well	chosen	particular	parameter	combination	simulates	the	system.	
Higher values of the likelihood function typically indicate better correspondence 
between the model predictions and observations (Vrugt et al. 2008b). The cruel va-
lues within the MCMC are: a number of sampling, a scale factor of each parameter 
α, which develops the step between (ωt−1) and (υ), and initial values of parameters. 
The initial values affect the chain only in its initial part, which in case of inaccurately 
selected values, need to be separated from the main chain. This pre-phase is descri-
bed	as	burn	in	effect	(see	fig.	3.11).	Properly	selected	initial	values	allow	achieving	
satisfactory results in a relevant short time.

MCMC-Metropolis sampling 
Within the MCMC Metropolis algorithm the trial position is sampled from the 

proposal distribution π(). Next the trial move is either accepted or rejected depending 
on the metropolis acceptance probability (Fig. 3.11), where: π()	−	density	of	the	tar-
get distribution. If the trial is accepted the chain moves to its position (υ), otherwise 
remains at the current location (ωt−1), see also Fig. 3.9.

Fig. 3.9. A scheme of the Markov Chain Monte Carlo sampling;
solid line presents a move when accepted position, dashed line – when rejected, doted line – next 
evaluation, ωn – current position, υn – next proposed position, n – number of the move/position
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Adaptive MCMC sampling
The main problem of the Markov Chain Monte Carlo techniques to sample 

from the posterior distribution is often a very slow convergence, especially when 
a prior is uninformative. The important advantage of the adaptive algorithm MCMC 
is therefore the possibility to permanently adopt the proposal distribution during the 
simulation run (Reichert 2011). That saves many unnecessary runs and allows for 
faster achievement of satisfactory results in a relevant short time, even if the initial 
values or a scale factor were not chosen properly.

Parallel MCMC chains
A possible extension is to run several Markov Chains in parallel and couple 

them adaptively. This leads to the posterior which summarizes results over all cha-
ins and usually allows for a better penetration of the parameters space. The limiting 
factor here is the computation time, which for many environmental models may be 
impossible to overcome.

Alternatively, other algorithms are available (Gilks et al. 1995; Haario et al. 
2001; Brooks et al. 2011; Chievers 2012). 

Monte Carlo Simulation
Because	usually	it	is	difficult	to	describe	the	predictive	distribution	of	model’s	

outcomes by statistics, it must be approximated. The most popular method to do so 
is a Monte Carlo simulation (MC). MC methods (or Monte Carlo experiments) are 
a class of computational algorithms that rely on repeated random sampling to com-
pute their results (Fig. 3.10). MCs are commonly used to approximate predictive 
uncertainty intervals by performing multiple and numerous runs by randomly sam-
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Fig. 3.10. Monte Carlo simulations; where qi, qj are i-(j-)quantiles
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pling	from	the	system	space.	The	system	space	is	defined	as	a	space	with	all	model	
possible solutions that may be obtained by running the model including parameters, 
model, input, output uncertainty.

3.7.4. Preliminaries 

Necessary preliminaries include an elicitation of the parameter prior for the 
Bayesian inference and a choice of a transformation function for the modeled varia-
ble.	Ideally,	a	function	that	allows	for	the	best	fulfilment	of	statistical	assumptions	
underlying the chosen likelihood function and provides with realistic uncertainty 
bands is searched for. Usually some preliminary analysis are required in order to 
chose the best solution. This could be easily undertaken within the R programming 
language.

In	addition,	a	sufficient	number	and	length	of	Markov’s	chains	which	will	en-
sure a good coverage of the parameter space should be chosen during preliminary 
trails. It is suggested to seek a compromise between a number of sample runs within 
the chain and computation time. Similarly, properly chosen initial values shorten the 
time required to fully explore the posterior. Those can be found with optimization 
methods. To minimize the effect of initial values, it is a common practice to cut away 
a burn in period at the beginning of the chain (Fig. 3.13).

Fig. 3.11. Example of the MCMC chains; Black line – MCMC; X-axis – number of MCMC runs; y-axis – 
parameters values; green line – burn in; BOTTOM – uninformative and TOP – informative initial values
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4. MATERIAL – RESEARCH BASIN 
AND HYDROLOGICAL MODEL STRUCTURE

4.1. Research basin

4.1.1. Overview

The proposed uncertainty analysis was tested on a small research basin, the 
upper part of the Sluzew Creek, located in south-west part of Warsaw, Poland (see 
Fig. 4.1). The Sluzew Creek basin, upstream of the investigated gauge „Wyscigi 
Pond”, has an area of 28.7 km2	and	is	rather	flat;	the	elevation	varies	from	95	m	to	
110 m above mean see level. The average annual precipitation in this part of Warsaw 
is	about	520	mm	and	the	average	daily	temperature	varies	from	-3°C	in	January	to	
+18°C	in	July	(WAU	2002).	

The	Sluzew	Creek	basin	was	chosen	for	the	study	due	to	frequent	flooding	and	
flood-related	sediment	problems.	In	the	last	four	decades	Sluzew	Creek	has	undergo-
ne rapid urbanization. Today urban areas cover 58.7% of the basin, whereas the ratio 
of impervious area of the whole basin is 32% (Sikorska et al. 2013). As a consequen-
ce,	it	is	strongly	affected	by	urban	flooding	(every	second	year)	and	associated	sedi-
ment transport which mostly occur during the spring summer seasons (WAU 2002; 
Banasik et al. 2008; Sikorska, Banasik 2010; Sikorska et al. 2012). Unfortunately, no 
routine monitoring program exists and available data are limited to infrequent obse-
rvations in the last few year. This is a typical case for a SUB (Sects. 2.1.3 and 2.2.4), 
where due to rapid changes within the basin, an adequate monitoring program has 

Fig. 4.1. Overview of the Sluzew Creek basin location, Warsaw
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not yet been established. This also strongly affects nature of hydrological modeling 
in SUBs (Sect. 2.3).

4.1.2. Measurement sites and available data

For the purpose of this study, a dedicated monitoring program was performed. 
It consisted of continuous measurements of precipitation at six locations across the 
basin, stream water level and temporal hydrometric measurements at the basin outlet 
(see Fig. 4.2).

Rain gauges: Precipitation has been measured at three different locations (sites 
1-3	in	Fig.	4.2)	over	the	first	three	years	(sites	1-3;	July	2009	–	October	2012).	During	
the last period of the monitoring campaign (May – October 2012) three additional 
rain gauges were set up (sites 5-6 in Fig. 4.2). That gives in total three and a half hy-
drological years of measured precipitation with a temporal resolution of 10 minutes.

Stream gauge: A stream gauge has been installed at the outlet of the basin (see 
Fig. 4.1), here labelled as the Wyscigi Pond cross-section (WP). Monitoring program 
for the WP gauge included continuous measurement of water levels during three and 
a	half	years	(July	2009	–	October	2012),	temporary	measurements	of	a	cross-sectio-
nal	mean	velocity	during	field	 experiments	 by	means	of	 the	 area-velocity	method	
(WMO 2008) gathered regularly in intervals in 2010-2012.

Meteorological and hydrological data: As a result of the monitoring program, 
the following data were available for the purpose of the study: 35 rainfall-runoff 
(RR) events and 15 measurement points of area-velocity relations (see below).

Fig. 4.2. Gauges and their contributing areas for six locations
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RR events were selected based on the amount of total mean areal precipitation 
observed	 per	 event	 (>3	mm)	 and	maximal	 streamflow	observed	 during	 an	 event. 
A	flow	corresponding	to	more	than	three	times	the	base	flow	over	the	analysed	pe-
riod was chosen as a threshold (>0.6 m3 s-1). Storm events with discontinuous rainfall 
and	during	winter	periods,	due	to	potential	snowmelt	that	can	significantly	contribute	
to	runoff,	were	excluded	from	the	further	analysis.	This	is	justifiable	since	only	rain-
fall-runoff events are of interest.

Cross-section hydrometric data: Fifteen temporal measures of water velocity 
vs. water level were gathered over the period 2010-2012. Based on those, an em-
pirical rating curve (RC) was constructed using a power-law equation (see Fig. 4.3 
right). All records were collected during spring-summer seasons. Therefore, the va-
riation	of	the	RC,	although	usually	could	be	significant	due	to	seasonal	and	alluvial	
changes within the channel, here may be assumed as irrelevant. RC was validated 
based	on	the	information	on	the	cross-section	geometry	collected	via	field	measure-
ments (Fig. 4.3 middle).

4.2. Hydrological model description
4.2.1. Conceptual rainfall-runoff model (RR)

A deterministic rainfall-runoff (RR) model transforms input precipitation Px 
into	output	streamflow	q	(see	Eq.	3.22).	For	a	 typical	event-based	RR	model	 this	
process consists of three main stages:
1. estimation of the mean areal precipitation over the basin (Px);
2. evaluation of the effective rainfall (EP); the rainfall available for runoff after 

excluding	loss	for	infiltration	and	surface	retention;
3. routing of the EP to the basin outlet in order to determine the corresponding 

outlet	streamflow	(q).
The	 first	 part	 is	 usually	 external	 to	 the	RR.	Thus,	most	 of	RR	models	 take	

already estimated Px	as	an	input	variable.	These	three	stages	are	here	specifically	
modeled as described in details below.

Fig. 4.3. Wyscigi Pond cross-section (left and middle), Sluzew Creek, and an empirical rating curve (right)
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Mean areal precipitation
Px is estimated accordingly to the Thiessen polygons method (Thiessen, Alter 

1911) in which the entire area of a basin (Ac) is divided into n	rainfall	fields	or	po-
lygons (Ai) accordingly to station locations. The division between polygons is made 
by a line midway between the station under consideration and surrounding stations. 
A	rainfall	field	is	assumed	to	have	the	same	precipitation	as	observed	at	the	contri-
buting station (Pi). The mean areal precipitation over the basin (Px) is determined 
from	the	weighted	average	of	all	defined	rainfall	fields	where	weights	are	their	cor-
responding areas:

This method, due to its simplicity and a practical value, has found widely appli-
cations in hydrological modelling (e.g. Montanari, Koutsoyiannis 2012). The limita-
tions	arise	from	no	smoothing	in	estimated	rainfall	fields.

Effective rainfall
The EP is estimated from Px based on the Soil Conservation Sservice Curve 

Number (SCS-CN) method, called also NRCS-CN (Natural Resouces Conservation 
Service Curve Number, Hawkins et al. 2009). The SCS-CN method was developed 
by United States Department of Agriculture (USDASCS 1986, 1989). This method 
is frequently applied to evaluate the EP for RR models in small and poorly gauged 
basins (Banasik et al. 1988; Walker et al. 2000; Rosso, Rulli 2002; Mishra, Singh 
2003; Hawkins et al. 2009; Soulis et al. 2009; Sikorska et al. 2012). The popularity 
of the SCS-CN method is caused, on the one hand, by including most of basins cha-
racteristics which produce runoff, such as soil type, land use and treatment, surface 
or antecedent moisture conditions. On the other hand, it has conceptual parameters 
that can be derived from physical properties of the basin. Therefore, it is feasible 
for modeling in small basins (Banasik et al. 2008; Hawkins et al. 2009; Soulis et al. 
2009; Mishra, Singh 2010) and also urbanised ones (Sikorska, Banasik 2010; Sikor-
ska et al. 2012a).

A cumulative effective precipitation EP(t) is computed here as:

where Px(φ) is the total mean areal rainfall at time φ(t) estimated accordingly to Eq. 
4.1, Smax is the maximal potential retention of the basin (mm), and I is the initial loss 

Px = 
∑
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i = n

Pi × Ai

∑
i = 1

i = n

Ai
∑
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(mm).	I	is	usually	event-specific	and	therefore	difficult	to	estimate	in	advance.	Thus,	
it is not modelled directly but assumed at a constant ratio of Smax: I = η × Smax, where 
η is the ratio of Smax and for urban basins typically equals 5 %, whereas for rural equ-
als 20% (Hawkins et al. 2009).

Streamflow	at	the	basin	outlet
The	computed	EP	 is	convoluted	 into	direct	 streamflow	q at the outlet of the 

basin accordingly to the instantaneous unit hydrograph model (IUH) as proposed by 
Nash (1957). The concept of IUH was primarily developed by Sherman (1932) who 
defined	the	unit	hydrograph	(UH)	as	the	direct	runoff	hydrograph	resulting	from	a	
unit volume of effective rainfall of constant intensity which is uniformly distributed 
over the drainage area. The fundamental assumptions are that there is a linear re-
lation	between	the	inflow	(input)	and	outflow	(output)	and	that	effective	rainfall	is	
uniformly	distributed	over	the	entire	river	basin.	These	assumptions	are	justifiable	in	
small basins. A general form of the Unit Hydrograph h(t) is described as:

where	∆t is an interval time, t is continuous and φ is discrete time, and u(φ) are the 
ordinates of the IUH at t. 3.6 is the units conversion factor. Eq. 4.3 is valid for diverse 
forms	of	IUH.	Specifically	within	the	Nash’s	model	(Nash	1957),	the	IUH	is	repre-
sented as a gamma probability distribution function and is described:

The parameters N [-] and k [h] describe a basin as a cascade of N linear reservo-
irs with a retention parameter k of each reservoir (see Fig. 4.4.).

h(t,	∆t) = Ac
3.6	×	∆t u(φ)dφ  [m3 m-1 mm-1]∫

t

t-∆t
(4.3)
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Fig. 4.4. Concept of a basin within the Nash’s model; 
IUH pools’ areas are always constant and equal to 1.
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EP(t) from Eq. 4.2 is next propagated through the cascade of N-reservoirs to 
produce q(t) at the basin outlet:

The parameters of the RR model are described by a single vector θRR : θRR = 
{Ac, Smax, k, N}. Because all θRR can be derived directly from the basin properties, 
a	direct	calibration	of	RR	is	not	strictly	required	to	provide	streamflow	estimates.	
The described RR model was used in two applications: in the example I to model 
streamflow	(Sect.	3.6.1)	and	in	the	example	II	as	a	submodel	of	the	rainfall-water	
level model (Sect. 3.6.2).

4.2.2. Rainfall-water level model (RL)

A rainfall-water level (RL) model introduced in Sect. 3.6.2 consists of: 1) the 
RR submodel as described in Sect. 4.2.1; and 2) a runoff-water level (LR-1) submo-
del, presented below.

Runoff-water level submodel
The LR-1 submodel is the inverse of the water level-runoff (LR) model (Eq. 

3.28). Here, a power law equation (e.g. Petersen-Øeverleir 2004; Di Baldassarre, 
Claps 2011; Domeneghetti et al. 2012; Le Coz 2012) has been used, which for the 
uniform cross section may be written as a classical rating curve (RC):

RC1; … ; RC3 are empirical parameters of the RC represented by a vector 
θRC = {RC1, RC2, RC3}. The LR model requires, however, the inverse form of the 
RC, so RC-1, which for a predicted water level l can be written as:

The parameters of the RL consist of the RC and RR submodel parameters (Eqs. 
4.6 & 4.7) i.e. θRL = {Ac, Smax, k, N, RC1, RC2, RC3}. The RL model was applied to 
model water levels in the example II (Sect. 3.6.2).

4.3. Prior knowledge elicitation

Bayesian inference requires an explicit formulation of the prior on all para-
meters	as	a	probability	density	function.	The	aim	is	to	find	the	distribution	that	best	
reflects	 the	current	knowledge.	Unfortunately,	 this	 is	not	an	easy	 task	because	no	
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q(t) = RC1(l(t)	−	RC2)RC3 [m3 s-1] (4.6)
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1
RC3

+ RC2  [m1s-1] (4.7)
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explicit rules exist (O’Hagan 1998; Scholten et al. 2013). Therefore, for the purpose 
of this study, an approach to establish a prior has been developed. A prior on the de-
terministic models is elicited by means of the parametrization process (Sect. 2.2.2), 
whereas for the error models (Sects. 3.5.1 and 3.5.3) it takes advantage of expert 
knowledge and previous experience (studies). The approach is directly transferable 
to other research studies where the same models are applied. In a similar fashion, 
a prior on other hydrological model parameters with physical meaning could be 
obtained.

Since it is intricate to describe dependencies between prior parameters before-
hand, an independence between all parameters is assumed a priori as done by Yang 
et al. (2007), Reichert and Schuwirth (2012) or Honti et al. (2013).

4.3.1. RR model parameters

In the following, the probability distribution function p(θRR)	 is	defined,	θRR = 
{Ac, Smax, k, N} (Sect. 4.2.1). Ac represents the area of a basin in [km2] and can be 
derived from topographic maps or GIS data. Smax, the maximum potential retention 
capacity of the basin [mm], is related to the Curve Number (CN) (USDA-SCS 1986, 
1989) as:

CN [-], represented as a function of basin land-use types, soil groups and hydro-
logical conditions, is estimated as the average value over the entire basin according 
to the empirical values investigated by USDA-SCS. Usually CN can be derived from 
GIS data. An error of 10% of the estimated mean due to inaccurate maps may be 
assumed for both Ac and CN (Sikorska et al. 2012a). If no GIS data are available for 
SUB, these values must be elicited from topographic maps. However, while Ac usu-
ally remains constant for a basin over time, Smax	may	alternate.	Thereto	a	sufficient	
wide prior distribution on Smax should be used.

k [h] and N [-] are Nash’s model parameters and their average values may be 
derived directly via different empirical methods or indirectly through a relation to 
IUH characteristics (tp & up). The relation between N, k and tp, up are as follows:

where Nk = Lag, which describes the lag time [h]. Such empirical methods link pa-
rameters values to basin characteristics. However, their results may be biased. The-
refore, it is proposed to use in parallel several empirical equations in order to infer 
parameter values. These values can be used to establish a prior, e.g. by the method 
of	moments	(Sikorska	et	al.	2012a).	Here,	five	different	empirical	methods	presented	
in	Table	4.1	are	applied	simultaneously	to	fit	the	prior	distribution	for	N and k. The 

Smax = 25.4(1000
CN −10) (4.8)

tp = k (N	−	1)	 	 [h] (4.9)

u(t) = 1 
kГ(N)

(N	−	1)N−1

e N–1 [h-1] (4.10)
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choice of applicable methods was dictated by its usefulness also for basins with poor 
information and also due to popularity of these methods in Polish conditions. The 
approach could be extended to other relations including exploratory analysis of the 
hydrographs	(Haan	et	al.	1994;	Bhunya	et	al.	2003;	Jain	et	al.	2006;	Singh	2007).

4.3.2. RL model parameters

The vector θRL consists of two sub-vectors θRR, as above, and θRC = 
{RC1,  RC2, RC3} (Sect. 4.2.2). RC	parameters	should	be	ideally	defined	from	some	

Table 4.1
Methods to derive IUH characteristics and Nash model parameters

Method tp or k up or Lag

1. SCS
(USDA-SCS 1986) up = 0.75 1

tp

2. Lutz
(Lutz 1984) tp = P1

LLc

J1.5
g

( )0.26

e-0.016U e0.004W up = P2
1

tp
P3

i)

3. Rao
(Rao et al. 1972) k = 0.56 A0.39 Pe

−0.11 De
0.22(1 + U)−0.62 Lag = 1.28 A0.46 Pe

−0.27 De
0.37(1 + U)−1.66

4. GIUH
(Rogrίguez-Iturbe,	
Valdes 1979)

RA

RB
( )tp = 0.44

0.55

RL
–0.38 LΩ

v
up = 1.31 RL

0.43

LΩ

v ii)

5. GCIUH
(Nowicka, 
Soczyńska	1989)

tp	=	0.33П
0.67

П	= n1.5BΩL2.5
Ω

S0.75
Ω R 0.6

L AΩ	ir tr

up = 1.53П0.67
1

i) P2 = 0.64, P3 = 1.04 [Lutz 1984]
ii) v = 0.665 · α0.66

Ω · (ir · A)0.4, αΩ = 
S0.5
Ω

nB 0.67
Ω

 in (m-1s-1/3) and RB/RA = 0.8 [Rodriguez-Iturbe et al. 1982; Hall 
et al. 2001]
Notes: L – lenght of the stream to the central point, assumed to be equal to 0.5 l, U and W – ratio 
of urbanized and forest areas (%), P1 – parameter dependent on the roughness of the stream, P2 and 
P3 – dependent on the interval of estimation, Lag – Lag time (h), A – total basin area (km2), U – fraction 
of the impervious area in the basin (-), Pe and De – amount (mm) and duration (h) of effective rainfall, 
ir and tr – effective rainfall intensity (cm h-1) and its duration (h), AΩ, BΩ, LΩ – area (km2), width (m) and 
length (km) of the highest order stream, RA, RB and RL are the Horton area, bifurcation and length ratios 
of the basin [Tarboton 1996], v – average peak flow velocity (m s-1), n – Manning roughness coefficient 
(m-1/3s-1) 

tp = 
1000
CNL0.8 ( −	9)0.7

2.92 J 0.5
z
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field	observations.	For	this	purpose	already	existing	data	obtained	from	hydrometric	
measurements of cross-sectional average velocities and corresponding water levels 
can be easily adapted (Sikorska et al. 2013). Thus, it is proposed to calibrate the RC 
according to Eq. 4.7 with the standard Maximum Likelihood Estimate (MLE). MLE 
is a standard non-Bayesian technique to estimate single parameter values that give 
the	best	fit	to	the	observed	variable.	In	practice,	MLE simply maximizes the likeliho-
od function (Christensen et al. 2011). Next, p(θRC) can be derived using large sample 
size properties of the MLE (e.g. Harrell 2010). A clear merit of using MLE is that 
such a prior contains information on mutual correlations within θRC. If no hydrome-
tric measurements are available, one can consider constructing the RC according to 
the information on cross section geometry which, depending on the cross-section, 
can	be	obtained	already	from	a	single	field	inspection.

4.3.3. Lumped error model parameters (LEM)

The elicitation of the LEM model parameters θLEM (Sect. 3.5.1) is intricate due 
to the fact that they do not have a direct physical meaning. Mostly, because θLEM com-
pensates for all errors not explicitly acknowledged in the study. Thus, θLEM differs in 
both examples. Namely, θLEM represents a combination of model structure errors and 
streamflow	measurement	errors	in	the	example	I	(Sect.	3.6.1);	and	model	structure	
and input precipitation error in the example II (Sect. 3.6.2). To represent such lack of 
knowledge on LEM parameters it is recommended to select wide positive distribu-
tions; e.g. gamma or log-normal distributions (see Table 5.2 for an example).

4.3.4. Input rainfall error model parameters

For urban basins, a log-normal distribution with a mean 1 has been suggested as 
a good prior on θζ (e.g. McMillan et al. 2011; Sikorska et al. 2012a):

The standard deviation σζ [-] can be assumed based on the information of rain-
fall measurements (its accuracy and representativeness).

5. RESULT EXAMPLE: BAYESIAN 
UNCERTAINTY ANALYSIS IN SUB
5.1. Results of the preliminary analysis

Elicited prior for the Bayesian inference
The resulting prior elicited for the experimental basin of Sluzew Creek (Sect. 

4.1) for two models: rainfall-runoff (RR) and rainfall-water level (RL) in two appli-
cation examples is presented in Table 5.1. In addition, Table 5.2 presents results of 
the parametrization process for two parameters of the conceptual RR model, N and 
k	(Sect.	4.2.1).	The	correlation	of	both	parameters	is	verified	in	Fig.	5.1.	As	can	be	
seen,	no	significant	correlation	between	both	parameters	appeared.

ζ ~ LN(μζ;σ2
ζ ) where μζ = 1 (4.11)
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Table 5.1
Prior distribution for the Sluzew Creek basin

Parameter Prior

Abbreviation Meaning Distribution; Mean; Standard deviation

Deterministic models
Rainfall-Runoff (RR) model

A basin area, [km2] N; 28.3; 2.8
Smax maximal potential retention of the basin [mm] LN; 55; 33
k retention time of a linear reservoir [h]a) LN; 2.0; 1.0
N number of linear reservoirs [-]a) LN; 3.2; 1.0

Rating Curve (RC) model
RC1 coefficient,	or	streamflow	scale	[–]b) N; -7.5; 1.1

RC2
location	parameter,	or	cease	to	streamflow-wa-
ter level, in units of the water level, e.g. [cm]b) N; 16.8; 6.6

RC3
exponent, linked to the type and shape of 
the hydraulic control [–]b) N; 0.6; 0.1

Error models
Lumped error model (LEM)

σI
asymptotic standard deviation of errors 
[m3s-1], [cm], [mgl-1]c) Γ;	2;	2

τ
characteristic correlation time of the autore-
gressive process [min]

Γ;	300;	200

Input error model (R)
σζ standard deviation of n rainfall multipliers [mm]d) Γ;	0.1;	0.05

ζj
rainfall multiplier for each j from n rainfall 
events [-]e) LN; 1; E(σζ)

a) Distributions of N and k were derived from the empirical methods presented in the table 5.2; b) prior 
on RC parameters is described as a multivariate normal distribution; c) units of σI are of the modelled 
variable and therefore diverse for both experiments; d) n – number of selected rainfall-runoff events; 
e) ζj relates to the standard deviation of each rainfall multiplier, identical for all multipliers. Distribu-
tions:	N	–	normal;	LN	–	lognormal;	Γ	–	gamma

Table 5.2
Nash’s model parameters, k & N, derived empirically for the Sluzew Creek basin and their prior distribution

Method k [h] N [-]
SCS 2.20 4.70
Lutz 0.63 3.63
Rao 1.74 2.16
GIUH 1.82 2.81
GCIUH 3.54 2.73
Prior LN; 2.0; 1.0 LN; 3.2; 1.0
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Parameters of transformation functions
In	 this	 study,	 the	Box-Cox	 transformation	was	 found	 to	be	 sufficient	 in	 sta-

bilizing model residuals. The transformation parameters which worked best were: 
λ1 =  0:35 [-] for both examples and λ2 = 0 [m3s-1] for the example I and λ2 = 0 [cm] 
for the example II.

Preliminary trials
Preliminary Monte Carlo Markov Chains (MCMC) were run in each applica-

tion	example	in	order	to	determine	a	sufficient	number	of	chains	and	samples	(see	
Sect.	3.7	for	details).	Namely,	a	chain	with	1000	samples	was	run	at	first.	Next,	the	
number of samples was being gradually increased by doubling the previous num-
ber of samples until a good chain convergence was obtained. The resulting optimal 
number of samples were found to be 200 000 in the example I and 100000 in the 
example II. In both examples, multiple chains were run in order to fully explore the 
posterior distribution; 12 and 3 respectively. All model parameters were inferred 
simultaneously.

5.2. Example I - streamflow predictions

In	the	example	I,	the	uncertainty	of	streamflow	predictions	was	assessed	with 
a particular focus on the input uncertainty described by precipitation uncertainty.

5.2.1. Results of the statistical inference

Posterior parameter distribution
The inferred posterior parameter distribution p(θI|Q) is presented in Figure 5.2. 

The marginal posterior pdfs prove that the learning process from the data content 

Fig. 5.1. Correlation between N and k	for	five	empirical	methods
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was	beneficial	 for	most	 parameters.	Particularly,	 two	RR	parameters	 suggest	 that	
the response of the Sluzew Creek basin to the rainfall can be described by about 1.7 
reservoirs (N) with a retention time (k) of 5.2 hours (Nash’s parameters). For the 
other two RR parameters (A & Smax), the mode of the posterior, 3 km2 & 3.2 mm re-
spectively,	was	significantly	shifted	in	comparison	to	the	prior.	A	corresponds	to	the	
basin area, whereas Smax	defines	the	maximal	potential	retention	of	the	basin.	Lower	
posterior	values,	although	they	may	seem	surprising,	indicate	that,	first,	in	Sluzew	
Creek presumably only a fraction of the total basin area contributes to the surface 
runoff (A) during heavy rainfalls. Second, in regard to the natural retention of the 
basin (Smax), it does not seem to affect the surface runoff during heavy rainfalls. This 
can	be	justified	because	Smax	is	only	significant	for	permeable	sites;	the	retention	of	
impermeable sites equals zero. A small value of Smax can thus be explained by the 
fact that during heavy rainfalls only the impermeable part of the basin contributes to 
the direct surface runoff, which is here modelled. This sounds reasonable for a SUB 
which is expected to have a rapid process of runoff formation (see also Sect. 2.1.2). 
The residual runoff from permeable sites is expected to be much postponed in time 
and is not explicitly modelled here.

As for the LEM parameters, much information was gained from the data be-
cause the posterior (modes: σI = 0.2 m3s-1 & τ = 920 min) is narrower and strongly 
shifted in regard to the assumed prior. The posterior parameter values should be 
interpreted as ’effective’ values for the LEM in this basin, the applied RR model and 
this application example. 

Regarding the input error model (R), interestingly, the posterior standard de-
viation of all rainfall multipliers (with a mode of σζ	=	0.55)	increased	significantly	

Fig. 5.2. Prior (solid line) and posterior (grey polygons) parameter distributions; 
A [km2], Smax [mm], k [h], N [-] – RR parameters, σI [m3s-1] (sIM) and τ [min] – LEM parameters, 

σζ		[-] – R model parameter. Y-axes – pdfs; x-axes – parameter values
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compared	to	the	prior	(0.1).	This	finding	indicates	that,	first,	the	prior	pdf	underesti-
mated the input uncertainty, and second, the deviations in input uncertainty among 
all rainfall events are high (see below). This could also be caused by the model sen-
sitivity to changes in rainfall multipliers and is discussed below.

Parameters correlations
The	correlations	between	all	parameters	are	presented	in	Fig.	5.3.	A	significant	

correlation can be observed between two RR model parameters, k and N, which are 
the Nash’s model parameters (see Sect. 4.2.1). They describe together the rainfall-
-runoff process within the basin and therefore their strong correlation should not sur-
prise. Alternatively, one of the Nash’s parameters could have been also kept constant 
while only the second was inferred. This could be considered if computation time 
was a limiting factor.

As	can	be	seen,	the	inferred	posterior	contain	mutual	influences.	Thus,	model	simu-
lations should be always drawn from the full marginal posterior distributions. Sampling 
parameter values independently will lead usually to the overestimated uncertainty bands.

Fig. 5.3. Posterior parameters correlations in example I
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Inferred rainfall multipliers
Figure 5.4 presents posterior pdfs for all 35 inferred rainfall multipliers.
A population of the inferred multipliers can be described by a mean which is 

close to the value of 1.0 [-] and a standard deviation of 0.55 (σξ). The individual mo-
des of the estimated rainfall multipliers varied from 0.82 to 3.2 with a mode of 1.3 

for all events. This nicely shows that the intuitive prior with a mean equal to 1.0 is on 
average a reasonable assumption. However, when analyzing each event separately, 

Fig. 5.4. Prior (solid line) and posterior (grey polygons) distributions of rainfall multipliers; 
numbers label rainfall-runoff events; y-axes – pdfs; x-axes – parameter values

Fig. 5.5. Diagnostic plot of rainfall multipliers (z). left panel: posterior distribution p(z) (solid line); 
x-axis – pdf; y-axis – values of rainfall multipliers [-]; right panel: black dots – relation between poste-

rior modes of z (y-axis) and rainfall amounts observed per event (x-axis); dashed grey lines cut thre-
sholds for small (<10 mm) and large rainfall events (>30 mm). Red dashed line – posterior mean of z
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high deviations from this value were observed. For events with a higher observed 
rainfall, the accuracy of the rainfall measure was usually found to be higher than for 
those with a relatively small rainfall (Fig. 5.5). This can be well explained by two 
reasons. On the one hand, the precipitation measurement accuracy itself decreases 
significantly	 for	 small	 rainfalls	due	 to	 the	absolute	equipment	error.	On	 the	other	
hand, for small rainfalls the possibility that the measured rainfall is only locally 
observed and does not cover the whole basin increases. Therefore, when extrapola-
ting measured values across the entire basin, the error may be considerable. This is 
further discussed in the Discussion, Sect. 6.1.

Fulfilment	of	statistical	assumptions
The statistical inference of obtained results is crucial for the UA because only 

if	statistical	assumptions	are	fulfilled,	the	computed	PU	in	calibration	and	validation	
mode can be considered as meaningful. The diagnostic plot of LEM model residuals 
is presented in Fig. 5.6.

To	assess	the	fulfillment	of	underlying	statistical	assumptions,	the	residuals	of	
LEM are compared to the residuals of the traditional Gaussian error model. In both 
cases, residuals are computed as a difference between observed and simulated values 
corresponding to the best model prediction (mode). However, in LEM the difference 
between observed and simulated values are calculated in the transformed space; here 
after using the Box-Cox transformation.

As shown in Figure 5.6, the Gaussian assumption of i.i.d on residuals would 
have been here clearly violated because the residuals of the RR indicate a strong 
autocorrelation (bottom left panel) and a heteroscedasticity (top left). This means 

Fig. 5.6. Right panel, diagnostic plot of residuals in the LEM and, left panel, of residuals in the tradi-
tional Gaussian error model by the example of one event (No. 6) in example I.

The	assumption	of	i.i.d.	is	clearly	violated	for	residuals,	middle	left	panel,	and	fulfilled	for	residuals	
of LEM, middle right panel. The top panels present sequences of residuals, left, and LEM residuals, 

right. A strong autocorrelation (ACF) can be observed for model residuals, bottom left.
ACF	is	significantly	reduced	for	LEM	residuals,	bottom	right
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residuals are not i.i.d., proved by middle left panel. Contrary, the assumption of 
i.i.d	on	residuals	in	the	LEM	is	clearly	better	fulfilled	(right	middle	panel)	because	
innovations show strongly reduced autocorrelation (bottom right panel) and hetero-
scedasticity (top right panel), even if a slight autocorrelation still remains. This can 
be	explained	by	structural	deficits	of	the	applied	RR	model	which	can	not	perfectly	
reproduce the observed variable; see Sect. 5.2.2 for further explanation.

5.2.2.	Uncertainty	of	streamflow	predictions

The predictive intervals (PIs) were computed for RR events in the validation 
mode by randomly sampling from the derived posterior with 1000 repetitions by 
means of the leave-one-out-cross-validation method (Sect. 3.4.3). This means that 
PIs for each event are the result from a model calibration without this event; 35 in-
dependent MCMC chains were generated for every calibration set of other 34 events 
and validated on the remaining one. Thus, 35 different full posterior distributions 
were computed. The resulting 95%-PIs are presented in Figure 5.7 as grey polygons. 
Solid red lines illustrate the best predictions for the mode of the posterior, whereas 
the validation data points are depicted with black dots.

The	 credibility	 of	 streamflow	predictions	was	 assessed	 accordingly	 to	 their: 
i)	data	coverage	and	ii)	sharpness	with	respect	to	the	observed	streamflow	data.	It	is	
worth	noting	that	the	observed	streamflow	records	for	each	validated	event	are	tre-
ated as reference (’future’) data since they were excluded from the calibration mode.

Generally, 84% of data are properly covered by the PIs for all events, 14% of 
data lie above and 2% of data below the upper and lower limits, respectively. Lower 

Fig.	5.7.	95%	PI	for	predicted	streamflows	[m3s-1] in the Sluzew Creek in the validation mode. Bold 
numbers above events label rainfall events; x-axes represent time from the beginning of the rainfall 
event;	y-axes	–	streamflow	[m3s-1] and 10 minutes rainfall intensity [mm]. Dotted black line depict 
observations; red solid line – posterior mode; blue bars – observed rainfall; horizontal dashed grey 

lines are depicted in 0.5 intervals of y-axes values
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coverage is observed for events No. 2, 8, 12, 13, 19. This is most probably due to 
limitations in the RR model structure that is restricted to model events which follow 
the conventional rainfall-runoff process within the basin.

The	derived	PIs	are	on	average	113%	and	up	to	350%	higher	than	steamflow	
peaks during rainfall-runoff events; assessed by the upper limits.

5.2.3. Contribution of the input uncertainty

The relative contribution of the input uncertainty to the total PU was assessed 
by performing two independent MC simulations. First, PIs were derived by sampling 
randomly a parameter vector while RR parameters were kept constant at their maxi-
mum probability. Thus, the predictive uncertainty bands were derived whilst igno-
ring uncertainty in RR model parameters. Second, MC simulations were performed 
without	considering	the	input	uncertainty.	Each	rainfall	multiplier	was	fitted	to	the	
value of 1.0 and no deviations were considered. As a next step, a parameter vector 
conditioned	on	fixed	rainfall	multipliers	was	sampled	from	the	posterior.	From	this	
the resulting uncertainty bands without considering input uncertainty were derived. 
By comparison of both PIs to the total PIs, the importance of the input uncertainty vs. 
RR model parameter uncertainty was assessed and is presented in Fig. 5.8.

In general, the corresponding PIs while considering input uncertainty were fo-
und to be higher than those with neglecting input uncertainty. The latter bands are 
up to 65% and on average 30% narrower than the total PU bands; assessed by stre-
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Fig.	5.8.	influence	of	the	input	uncertainty	in	the	Sluzew	Creek	streamflow	[m3s-1] predictions. Grey 
polygons describe 95% total PIs; green lines describe 95% PIs whilst ignoring the input uncertainty; 
violet lines present 95% PIs whilst accounting for the input uncertainty. Bold numbers above events 
label rainfall events; x-axes represent time from the beginning of the rainfall event; y-axes – stream-

flow	[m3s-1] and 10 minutes rainfall intensity [mm]. Dotted black line depict observations; 
red solid line – posterior mode; blue bars – observed rainfall; horizontal dashed grey lines 

are depicted in 0.5 intervals of y-axes values
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amflow	peaks.	When	parameter	uncertainty	is	neglected	the	PIs	become	up	to	25%	
and	on	average	less	than	0.1%	smaller	than	the	total	PU	bands.	This	finding	would	
suggest	that,	first,	the	uncertainty	due	to	input	rainfall	is	more	important	(relatively	
40%	higher)	than	the	uncertainty	due	to	RR	model	parameters	for	streamflow	predic-
tions in Sluzew Creek. Ignoring input uncertainty would lead to narrower and thus 
presumably underestimated PI. Second, as can be noticed by comparison of both PIs, 
the LEM which lumps here model structure and measurement errors still contributes 
significantly	to	the	total	PU.	This,	however,	is	not	straightforward	to	assess	due	to	
mutual correlations between parameters. For further explanation see Sect. 6.1.

The quantitative contributions of both uncertainty sources are always strongly 
case-related. Thus, the proposed UA should always be performed for new basins or 
research studies

5.2.4. Conclusions from the example I

The	example	I	addressed	the	uncertainty	of	streamflow	predictions	in	RR	mo-
dels and the relevance of the input variable uncertainty to the total predictive uncer-
tainty (PU), vs. the RR model parameter uncertainty. Based on the results from the 
Sluzew Creek basin, the following conclusions can be drawn:
•	 The Sluzew Creek basin responds rapidly to heavy rainfalls and only a part of 

the	basin	contributes	 to	 the	streamflow	observed	 in	 the	stream	during	heavy	
rainfalls.	The	PU	of	streamflows	in	Sluzew	Creek	is	high	and	has	on	average	
value	of	113%	of	the	observed	streamflow	peak.	The	extreme	uncertainty	bands	
went	up	to	a	value	of	350%	higher	than	the	streamflow	peak.	For	the	Sluzew	
Creek basin, the input uncertainty contribution was found to be relevant, up 
to 65% of the total PU, and higher than the RR model parameters uncertainty, 
which was up to 25%, respectively.

•	 The	Bayesian	approach	was	proved	to	be	beneficial	in	assessing	flood	predic-
tions in SUBs because it allows one for incorporating available knowledge in 
a feasible way and for an explicit treatment of diverse uncertainty sources. An 
explicit treatment of the input uncertainty adds value to the analysis. First, it 
avoids	common	assumptions	on	insignificant	input	variable	error.	Second,	one	
can directly assess the input uncertainty contribution to the total PU. The adop-
ted rainfall multipliers approach is very practical because i) it has manageable 
number	of	parameters	to	be	inferred,	ii)	improves	model	fit	to	the	data	during	
the calibration mode, and iii) is feasible in making predictions.

•	 The example of Sluzew Creek shows that the Gaussian assumption of identical-
ly and independently distributed (i.i.d.) residuals does not hold for hydrological 
models because residuals are heavily autocorrelated. That can be explained by 
the memory effect of the basin and a simple hydrological model structure. In-
stead, the autoregressive continuous lumped error model, LEM, deals better 
with autocorrelated residuals by normalizing them in the transformed space. 
The	fulfilment	of	the	underlying	statistical	assumptions	was	satisfying	for	most	
of	the	analysed	RR	events.	Thus,	the	LEM	appears	to	be	much	more	sufficient	
in explaining the RR process within the basin. Moreover, using a transforma-
tion function on variables allows for deriving more realistic uncertainty bands 
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which,	as	intuitively	expected,	are	higher	for	higher	streamflows	and	vice	versa,	
smaller	for	smaller	streamflows.	This	is	reasonable	since	more	extreme	events,	
for which less information is available, are expected to be more uncertain.
Several points need, however, to be further discussed. First, the not perfect 

fulfilment	of	the	statistical	assumptions	underlying	the	LEM,	which	were	observed	
for	some	of	events,	rises	a	question	of	a	simplified	conceptual	models	use.	Second,	
although	the	rainfall	multipliers	approach	appears	to	be	very	beneficial,	it	is	limited	
to event-based modelling because a unique multiplier for each RR event must be 
specified.	Third,	a	high	contribution	of	the	input	uncertainty	points	out	a	high	varia-
bility	in	rainfall	fields.	This	variability	cannot	be	captured	by	the	traditional	sparse	
rainfall gauging network and other methods should be considered. Fourth, also high 
uncertainty	on	predicted	streamflows	concerns	question	of	a	practical	value	of	such	
high uncertainty in water management. See further Sect. 5.5.

5.3. Example II - water level predictions

In the example II the uncertainty analysis was applied to water levels modelled 
by means of rainfall-water level model (RL). In particular, the focus of the UA was put 
on assessing the importance of the output uncertainty represented by the rating curve 
parameters.	These	are	relatively	compared	with	the	significance	of	RR	parameters.

5.3.1. Results of the statistical inference

Posterior parameter distribution
As	in	the	first	application	example,	much	information	has	been	gained	from	the	

data content because the marginal posterior pdfs of both (deterministic) submodels 
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Fig. 5.9. Prior (solid line) and posterior (grey polygons) parameter pdfs; RR parameters: A [km2], 
Smax [mm], k [h], N [-]; RC parameters: RC1 [-], RC2 [cm], RC3 [-]; and LEM parameters: 

σI [m3s-1] and τ [min]; y-axes – pdfs; x-axes – parameter values
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i.e. RR and RC were smaller variances than the assumed prior. However, as before, 
the direct interpretation of inferred parameter values is not straightforward because 
these includes mutual dependencies. This also complicates a direct comparison with 
results obtained for RR parameter in the example I. Although inferred RR parame-
ters were found to have slightly different values than in the previous example (Sect. 
5.2.1),	generally	they	further	confirm	the	previous	finding	that	during	heavy	rainfalls	
only	a	fraction	of	a	basin	area,	which	is	heavily	urbanized,	contributes	to	flood	flows.	
The detailed posterior for RR parameters are presented in Figure 5.9.

Not surprisingly, the posterior of the RC parameters is rather similar to the 
prior elicited. This was expected because rainfall-water level data do not contain 
information	on	the	RC	submodel	parameters	and	therefore	do	not	provide	a	signifi-
cant	learning	process.	Again,	this	finding	emphasizes	the	importance	of	obtaining	an	
informative prior distribution for the RC, as recommended in Sect. 4.3.

Finally,	the	learning	process	was	beneficial	for	LEM	parameters,	similarly	to	
the previous example. In both studies, however, the LEM compensates differently 

Fig. 5.10. Posterior parameters correlations in example II
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for	remaining	errors.	In	the	example	I	it	lumps	structure	deficits	of	the	RR	and	me-
asurement	errors	of	streamflow,	whereas	in	the	example	II	the	LEM	compensates	for	
structure	deficits	of	the	RL	model,	measurement	errors	of	water	levels	and	the	uncer-
tainty of the input variable i.e. precipitation. Thus, the direct comparison of inferred 
LEM in the two examples is not possible.

Parameter correlations
Mutual correlations between all parameters are presented in Figure 5.10. As 

can be seen, a strong correlation between all RC parameters was observed, what is 
reasonable	for	such	empirical	(fitted)	parameters.	Alternatively,	if	computation	time	
is a limiting factor, one could consider reducing the number of the RC parameters to 
be	inferred	by	keeping	some	of	them	at	fixed	values.	

A visible correlation can be also noticed for two of the RR parameters, k and N, as it 
was previously observed in the example I in Sect. 5.2.1. A very strong correlation obser- 
ved between the LEM parameters is rather intuitive because both parameters compensate 
together	for	the	structural	deficits	of	the	RL	model	and	all	other	uncertainty	not	explicitly	
acknowledged here i.e. water level measurement and rainfall input uncertainties.

Finally, a correlation between the RR and RC parameters is apparent. Intuitively, 
this can be explained by a mutual compensation of both submodels, RC and RR. As 
a consequence, inferred parameters of both submodels include these dependencies.

Fulfilment	of	statistical	assumptions
Figure 5.11 presents a diagnostic analysis of RL model errors at the maximum 

of the posterior distribution based on the example of one event. Following the ana-
lysis	discussed	by	an	example	of	application	to	streamflow,	the	assumptions	of	i.i.d	
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Fig. 5.11. Top panel, diagnostic plot of LEM residuals and, bottom panel, of residuals in the traditio-
nal Gaussian error model by the example of one event (No. 6) in example II. The left panels present 

sequences of residuals, bottom, and LEM residuals, top. A strong autocorrelation (ACF) can be 
observed	for	model	residuals	of	Gaussian	model,	bottom	right	panel,	whereas,	ACF	is	significantly	

reduced for residuals of LEM model, top right
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residuals	are	much	better	fulfilled	for	the	residuals	of	the	LEM	than	it	could	have	
been achieved with the traditional Gaussian error model.

5.3.2. Uncertainty of water level predictions

In the same fashion, the 95% PIs of water levels were approximated by means 
of Monte Carlo simulation with 1000 RL model runs by randomly sampling from the 
full posterior distribution and are presented in Figure 5.12. 

The reliability of such derived PIs was assessed again by means of leave-one-
-out-cross-validation method in terms of their data coverage and sharpness. The cor-
responding coverage of the 95% PIs in validation equals 84.5% of validation data 
points, of which 14% and 1.5% lie above and below the upper and lower limits, 
respectively. The computed 95% PIs are on average 29.3% and up to 82.4% higher 
than the observed maximum values; assessed by the upper limits.

The	 justifiable	 extrapolation	 range	 for	 the	RC	 is	 exceeded	 by	 the	 simulated	
water levels only for the event No. 19. This event nicely illustrates that extrapolating 
the	RC	beyond	its	justifiable	range	leads	to	unreliable	predictions.	The	estimated	PI	
are here clearly overestimated. Such a high water level as predicted by the RL model 
would	most	 likely	not	occur	 in	reality	because	of	overland	flow	outside	 the	flood	
plains. As this process cannot be modelled accurately with the applied RL, PIs are 
overestimated and this results in their poor coverage of observed data.

Thus, the computed PIs for predicted water levels are sharper than the ones 
computed	for	streamflows.	However,	because	different	variables	are	modelled,	this	
finding	cannot	be	directly	interpreted.

Fig. 5.12. 95% PIs for predicted water levels [cm] (grey polygons), left y-axes, in the Sluzew Creek 
during the validation. Bold numbers above label rainfall events; x-axes represent time from the begin-
ning of the event; right y-axes – 10 minutes rainfall intensity [mm]. Dotted black line depict observa-
tions; red solid line – posterior mode; blue bars – observed rainfall; dashed grey horizontal line cuts 

a	justifiable	extrapolation	range	for	the	RC
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5.3.3. Contribution of the rating curve uncertainty

The contribution of the RC model parameters to the total PU, Sect. 5.3.2, was 
assessed by performing two additional independent MC simulations in analogy to 
the example I when input contribution was assessed. Thus, 95% conditional PIs were 
computed,	first,	while	keeping	the	RC	parameters	at	their	posterior	modes,	and	se-
cond, inversely the RR parameters were kept at their modes. By comparison of both, 
the importance of their contributions to the total PU was addressed and is presented 
for 16 events in Figure 5.13.

The corresponding PIs were found to be almost of the same relevance for 
both RR and RC parameters, both PIs lie close to each other and to the total PU 
limits (Fig. 5.13). On average both PIs contribute only about 3% to the total PU and 
a difference in their contribution is less than 1% (mean) in the validation mode, with 
a	 slight	dominance	of	 the	RR	parameter	uncertainty.	This	finding	would	 suggest,	
first,	that	the	uncertainty	in	RR	and	RC	parameters	leads	almost	to	the	same	PIs	of	
water levels in the Sluzew Creek basin at this monitored cross section. Thus, for Slu-
zew Creek keeping parameters of both submodels at their modes would presumably 
lead to similar PIs as when the full posteriors for RR and RC are explored. Second, 
uncertainties of the RC and RR parameters contribute much less to the total PU in 
water level predictions while compared to the contribution of the LEM parameters 
alone (compare with grey polygons in Fig. 5.13).
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Fig. 5.13. Relevance of RC parameter uncertainty to the total PU, grey polygons, of predicted water 
levels [cm] in the Sluzew Creek. Overlapping lines depict 95% PI with ignoring uncertainty, green, 
in RC parameters and, brown, in RR parameters and point out a similar relevance of the RC and RR 

parameter uncertainties. Other notation as in Fig. 5.12
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5.3.4. Conclusions from the CASE STUDY II

The example II addressed the predictive uncertainty (PU) in hydrological mo-
delling and in particular the uncertainty of calibration data for RR models which 
were assessed by means of the corresponding RC method. Based on the results from 
the case of Sluzew Creek, it can be concluded that:
•	 Only a part of the Sluzew Creek basin contributes to the surface runoff which 

is	 rapid	during	heavy	rainfalls.	This	 is	 in	agreement	with	 the	findings	 in	 the	
example I. Uncertainty in water level predictions in Sluzew Creek, described 
as 95% PIs, are on average 29.3% and up to 84.3% higher than observations, 
assessed by water level peaks during the events. The contribution of the RR and 
RC parameters to the total PU was found to be almost of the same relevance in 
Sluzew Creek with a slight dominance of the RR parameters.

•	 Modelling	water	levels	directly	instead	of	streamflows	appears	to	be	beneficial	
because it allows one for incorporating the output uncertainty represented by 
the uncertainty in calibration data, and the RC parameters, into the modelling 
process and for assessing its contribution to the total PU.

•	 As	it	was	already	shown	in	the	example	I,	the	LEM	significantly	helps	fulfil-
ling statistical assumptions on errors of hydrological models. Using the simple 
Gaussian error model instead would clearly violate the assumption on i.i.d. 
residuals.	The	fulfilment	is,	however,	not	always	perfect.

•	 Extrapolating the RC beyond the measurement range is usually a necessity for 
flood	studies	because	flows	measured	 in	flood	conditions	are	 rare.	However,	
extrapolating RC beyond the permissible range leads to unrealistic uncertain-
ties of water level predictions which are usually overestimated. This is mostly 
due	to	the	fact	that	RC,	which	was	calibrated	for	streamflows	within	the	stream	
channel,	 is	used	 in	 the	present	events	 to	compute	flood	flows	which	usually	
flow	out	 of	 the	 stream	channel	 onto	floodplains.	Thus,	 such	flood	flows	 are	
greatly reduced. The permissible range is, however, not necessarily equal to the 
measurement	range,	especially	for	irregular	or	complicated	bathymetric	profi-
les. Therefore, updating and validating rating curves should be crucial prior to 
modelling.

•	 The contribution of the RR and RC parameters to the total PU was found to be 
relatively small. The uncertainty of RR and RC submodels is, however, higher 
than	this	reflected	only	by	their	parameters	uncertainty.	The	small	contribution	
of the RR and RC parameters to the PU suggests that the largest contribution re-
mains in the structural limitations of the RL model itself, lumped into the LEM. 
This requires, however, a careful interpretation because the RL consists of both 
RR and RC submodels. Finally, the presented approach to assess the contribu-
tion of output variable uncertainty in RR modelling was shown to be very prac-
tical. However, apart from pinpointing the output uncertainty contribution, it 
does	not	allow	for	direct	modelling	of	streamflow.	Thus,	it	is	only	useful	when	
water levels are of interest, see further discussion in Sect. 5.5.
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5.3.5. Lessons learnt from practical applications of uncertainty analysis

Lesson I
Results from the Sluzew Creek basin suggest that i) the contribution of the 

input	uncertainty	to	the	PU	is	significant	(up	to	65%)	and	about	40%	higher	than	the	
uncertainty of RR parameters themselves (up to 25%) (example I); ii) the contribu-
tion of RR parameters and output uncertainty, represented by RC parameters, to the 
total PU is almost of the same relevance with a slight dominance of the RR parame-
ters	(less	than	1%	difference)	(example	II).	These	findings	are	strongly	case-related	
and require careful interpretation. Although the UA approach alone is transferable 
to other basins, the individual contributions remain always case-related. These two 
points are discussed further in Sect. 6.1.

Lesson II
The	UA	approach	proposed	in	this	thesis	was	proved	to	be	beneficial	in	asses-

sing	flood	predictions	in	SUBS.	An	explicit	treatment	of	diverse	uncertainty	sources	
adds value to the analysis because it allows one to directly assess their contribution. 
In this, the rainfall multipliers and RC approaches to assess input and output variable 
uncertainties were shown to be very practical. Also the autoregressive continuous 
lumped	error	model	(LEM)	appeared	to	be	sufficient	in	explaining	the	rainfall-runoff	
within the basin. Main limitations arise from methodological aspects of the study 
and are further discussed in Sect. 6.2.

Lesson III
The	two	explored	application	examples	nicely	demonstrated	benefits	of	imple-

menting uncertainty into hydrological model predictions. A direct confrontation of 
predictions	computed,	first,	based	on	the	mean	value	only	and	second,	when	the	full	
posterior	distribution	is	explored	clearly	showed	that	the	possible	risk	of	overflooding	
may	be	significantly	underestimated	in	the	first	case.	Several	issues	need,	however,	to	
be further discussed. Relativity high predictive uncertainties estimated in both exam-
ples intuitively rise the question of a practical value of such high uncertainty and 
a possibility of incorporating UA into decision making process. Results of the UA are 
given in terms of probabilities and these cannot be interpreted by most of the people. 
Thus, the added value of analysis may be lost if it is not properly communicated. The 
UA	was	tested	with	the	use	of	simplified	models,	which	are	a	common	choice	in	flood	
studies in ungauged basins in Central-Eastern Europe. A relatively small contribution 
of RR and RC parameters suggests that the largest contribution remains in the struc-
tural limitations of the hydrological model itself, lumped into the LEM. This concerns 
doubts	of	the	suitability	of	such	simplified	models	used	to	flooding	forecast.	Finally,	
this also opens room for discussing the future perspectives of hydrological modelling.
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6. DISCUSSION AND OUTLOOK
6.1. Interpretation of the results

6.1.1. Uncertainty contributions in application examples

Example I
It	was	found	that	 the	 input	uncertainty	significantly	contributes	 to	 the	PU	of	

RR models in the Sluzew Creek basin representing a typical SUB. On the one hand, 
a	relatively	large	contribution	proves	a	high	variability	in	rainfall	fields	over	the	enti-
re basin. Even if on average the observed rainfall at the rain gauges may be conside-
red as representative for the SUB area, the variability observed in individual rainfall 
events	was	high.	This	variability	 is	difficult	 to	capture	only	by	means	of	a	sparse	
punctual gaining network (McMillan et al. 2011) and thus different methods should 
be sought (see further Sect. 6.3). On the other hand, rainfall multipliers ultimately 
increase	the	flexibility	of	the	hydrological	RR	model	and	hence	partly	compensate	
for	its	structural	deficits	(Sikorska	et	al.	2012a).	An	increased	number	of	calibrated	
parameters	allows	for	a	better	model	fit	to	the	observed	data.	Thus,	a	relatively	high	
contribution of the input uncertainty is likely also caused by mutual compensations 
of	input	error	model	and	error	model	of	RR	structure	deficits.	This	error	is	lumped	
together	with	the	measurement	error	of	streamflow	into	a	LEM.	It	is	further	assumed	
that	 the	measurement	 uncertainty	 of	 streamflow	 is	much	 smaller	 than	 the	model	
structure error itself and thus the LEM is dominated by the uncertainty in the model 
structure. However, this uncertainty cannot be decomposed from the LEM.

Example II 
The parameter uncertainties of both the RR and RC submodels were found to 

be almost of the same relevance and much smaller than the remaining error repre-
sented	by	the	LEM.	The	LEM	lumps	here	model	structure	deficits	of	the	RR	and	RC	
submodels, measurement errors of water levels and input uncertainty of precipita-
tion. This relatively small contribution of RR and RC parameters to the total PU has 
two	main	reasons.	On	the	one	hand,	all	model	parameters	(RR	and	RC)	can	be	defi-
ned precisely if the available recorded input-output data contain enough information. 
Thus, the parameter uncertainty may be reduced with more data. On the other hand, 
a	simplified	hydrological	model	applied	here	presumably	produces	a	high	systematic	
error in predictions. This error cannot be reduced with recorded input-output data 
because the model structure remains the same. Hence this error likely dominates 
beyond other uncertainty sources (Sikorska et al. 2013).

6.1.2.	Generalization	of	example	findings

The developed UA approach is general and can be applied to other studies. In 
contrast, the quantitative contributions of individual uncertainty sources found in 
this	study	cannot	be	directly	transferred	to	other	studies.	Because	of	specific	model	
structures, basin properties, available data and modeller’s/expert’s knowledge, the 
results of quantitative analysis always remain case related. Thus, to pinpoint indi-
vidual uncertainty contributions for another study, the entire UA must be implicitly 
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performed for each research study. It is worth noting that quantitative results contain 
a subjective element due to the need to specify the prior on model parameters. Usu-
ally, this subjectivity will be mitigated by the data during the Bayesian inference as 
long	as	the	specified	prior	allows	for	that;	i.e.	the	prior	assumed	probability	is	not	
equal to zero for values for which there is evidence in data.

Another thing is that the results obtained for RR are based only on a short ob-
servation	period,	3	years	for	RR.	Thus,	they	can	be	strongly	influenced	by	temporal	
conditions. Hence they do not allow for analysis of long term changes within the 
basin. For long-term analysis, more records should be gathered.

Although the merit of conceptual hydrological models lies in their conceptual 
parameters, which may be linked to basin properties and thus transferred to other 
studies without the need for direct model calibration. Because within the developed 
UA model parameters are described as a entire probability distribution and not as an 
individual parameters, they cannot be totally separated. This is due to the fact that 
inferred parameters include mutual dependencies and therefore lose some degree of 
their conceptual interpretation during the inference. Thus, they should be interpreted 
in term of the entire probability and only as the probability transfer to the other ba-
sins, e.g. as a prior, as also suggested by McIntyre et al. (2002).

6.2. Methodological aspects of the study and their limitations

The UA method developed within this work allows for assessing the impor-
tance of individual error sources. However, within this approach many decisions 
were made which need to be discussed in more detail. This includes in particular: 
i) using Bayesian inference for UA; ii) using rainfall multipliers; iii) rating curve 
(RC) uncertainty; iv) rainfall-water level (RL) model; v) lumped error model (LEM) 
and vi) strategies for uncertainty reduction.

6.2.1. Using Bayesian inference for uncertainty analysis

Bayesian	inference	was	demonstrated	to	be	very	beneficial	in	assessing	uncer-
tainties	of	flood	forecasting	in	SUBs.	The	great	advantage	of	Bayesian	inference	lies	
in the direct interpretation of the PU, which truly represents the probability of model 
predictions. In the same manner, the best model prediction is the most probable 
estimate. Bayesian inference also allows one to easily incorporate prior knowledge 
into model parameters from various sources, such as experts’ knowledge or previous 
studies. This is especially relevant for SUBs where typically no long-term recorded 
input-output data are available which would allow for a classical model calibration 
(Sikorska et al. 2012a). In addition, Bayesian inference has no high data require-
ments. Thus, already basic basin data enable a probabilistic statement on possible 
model estimates. Finally, Bayesian statistics allows for an explicit treatment of di-
verse uncertainty sources as input variables, model structure, parameters and output 
variables. This adds value to the analysis because it pinpoints important directions 
of further investigation in order to i) improve the accuracy of model predictions, and 
ii) reduce associated uncertainties (if reducible) (Sikorska et al. 2012a, 2013). In this 
way one can assess if e.g. more effort should be put into gathering more calibration 
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data for the selected hydrological model or whether another hydrological model sho-
uld be chosen. The main limitation arises from the need to formally describe errors 
of a hydrological model and consequently to formulate the likelihood function.

6.2.2. Using rainfall multipliers

To account for the uncertainty in input rainfall, the rainfall multiplier appro-
ach was adopted (example I). This approach was demonstrated to be very feasible 
in making predictions. However, it is limited to event-based modeling because an 
individual multiplier must be inferred for each RR event. Moreover, the approach 
fails if rainfall occurred but was not observed because a multiplier multiplied by 
a null value always yields null. As already pointed out in Sect. 6.1, using rainfall mul-
tipliers	increases	model	flexibility	to	reproduce	observed	input-output	data.	Thus,	on	
the	one	hand,	inferred	rainfall	multipliers	will	reflect	this	dependency.	Consequently,	
inferred rainfalls should be treated as inferred rather than real (Seibert, Beven 2009; 
Sikorska et al. 2012a). On the other hand, uninformative prior on input uncertainty 
would presumably lead to overestimating its contribution and therefore should be 
avoided (Renard et al. 2010, 2011). The approach of rainfall multipliers could also 
be	extended	to	account	for	uncertainty	in	other	variables	as	e.g.	streamflow.	This,	ho-
wever,	is	not	straightforward	to	implement	because	streamflow	cannot	meaningfully	
be divided into events. Thus, further research is required in this regard.

6.2.3. Rating curve (RC) uncertainty

The relevance of output uncertainty for RR models was assessed by quantifying 
the uncertainty in RC parameters (example II). The uncertainty of the RC submodel 
itself cannot, however, be assessed because the structure error of the RC is insepara-
bly lumped into the LEM. To quantify the total uncertainty of the RC submodel, its 
structural error needs to be decomposed from the LEM and explicitly acknowledged. 
To this end, further research would be required.

6.2.4. Rainfall-water level (RL) model

Incorporating RC into the RL model allows one to assess the contribution of 
calibration data uncertainty for RR models (example II). However, it does not al-
low	for	direct	modelling	of	streamflow,	which	is	an	internal	state	of	the	RL	model.	
Thus,	only	water	level	can	be	modelled.	To	estimate	streamflow,	water	level	must	be	
converted through the RC along with the accompanying uncertainty. Alternatively, 
streamflow	could	be	modelled	directly.	This	would	require	an	explicit	treatment	of	
the RC submodel.

6.2.5. Lumped error model (LEM)

Bayesian inference requires an explicit treatment of hydrological model errors. 
To this end, a LEM was applied to lump together all uncertainty sources not expli-
citly acknowledged. Thus, the LEM lumps different errors in the two application 
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examples	and	consequently	specific	findings	from	those	two	studies	cannot	be	quan-
titatively compared.

In	both	examples,	the	LEM	proved	to	be	sufficient	in	explaining	the	rainfall-
-runoff processes with the basin because it accounts for the correlation apparent 
between errors of hydrological model predictions. Thus, it appears to be a promising 
alternative to the commonly applied classical Gaussian independent error model.

6.2.6. Strategies for the predictive uncertainty reduction

The developed uncertainty analysis allows pinpointing the importance of indi-
vidual error sources. This information is relevant for planning strategies of uncerta-
inty reduction. In this regard, a few recommendations can be given. 

Model parameter uncertainty can be gradually reduced by gathering more me-
asured input-output data and using more precise information to elicit prior i.e. more 
accurate maps or remote sensing data. The reduction of the PU is, however, limited due 
to other source contributors, and after reaching a certain point not noticeable any more.

Input rainfall uncertainty may be reduced with more precise rainfall informa-
tion.	One	could	greatly	benefit	with	a	denser	network	of	rain	gauges,	weather	radar	
or retrieving data from telecommunication networks such as microwave links (Fencl 
et al. 2012; Bianchi et al. 2013). A denser rain-gauge network typically has some 
costs attached to it, such as equipment purchase and maintenance. In contrast, using 
radio	links,	one	may	benefit	from	already	existing	infrastructure	over	all	continents	
and a high resolution of links (locations). Thus, no additional costs for equipment 
have to be borne.

Output uncertainty of RR models could be reduced with more precise infor-
mation on a RC used to derive calibration data for RR models. This may be espe-
cially	significant	for	poorly	gauged	cross	sections	with	only	a	few	measured	water	
level-streamflow	records	available	or	 for	dynamic	basins	where	cross	sections	si-
gnificantly	change	seasonally	or	with	changing	land	use.	Uncertainties	on	already	
existing RCs could be reduced by incorporating remote sensing data from satellites 
(Di Baldassarre, Uhlenbrook 2012). Finally, it is crucial to update RCs frequently 
and	to	successively	extend	their	measurement	range	to	also	cover	flood	conditions	
(Domeneghetti et al. 2012).

Alternatively, one could consider improving the structure of a hydrological mo-
del. This will reduce systematic errors observed in predictions; structure model error. 
In general, this is tied to the availability of input and output data, and their content, 
to calibrate parameters of the improved model. If data do not contain enough infor-
mation to infer all model parameters, the parameter uncertainty will increase more 
than the uncertainty of model structure decreases.

6.3. Outlook
6.3.1. Practical value of the predictive uncertainty

Quantification	of	the	predictive	uncertainty	in	hydrological	modelling	is	rele-
vant	for	many	studies,	such	as	flood	hazard	analysis,	water	management,	mitigation	
strategies or urban development analysis (Montanari 2007; Efstratiadis, Koutsoyian-
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nis 2010; Ramos et al. 2010). For instance, UA could be useful to evaluate whether 
a	bridge,	floodplain	or	city	will	be	overflooded	during	the	forecast	rainfall	event	and	
with which probability. For water quality analysis not only temporal but rather long-
-lasting conditions are important. This is due to the fact that many aquatic species 
may endure a relatively high dose of pollution if it is only temporary but will extinct 
with a smaller long-lasting dose. In this, uncertainty on water quality estimates may 
support water quality management by formally (probabilistically) comparing diverse 
strategies for water quality improvement and their impacts on receiving waters. 

UA	quantifies	the	model	PU	under	current	conditions	e.g.	the	current	knowled-
ge on the future or current state. This knowledge may be (very) uncertain and this 
will	be	reflected	by	large	uncertainties.	This	may	lead	to	concerns	of	usefulness	of	
such large uncertainties. Intuitively, uncertainty of predictions referring to unknown 
conditions	cannot	be	expected	 to	be	 small.	Thus,	PU	of	100%	of	high	flows	and	
1000%	for	low	flows	are	not	uncommon	and	have	been	reported	[Blöschl,	Montanari	
2010]. In this, uncertain information, even if not preferable, is always more useful 
than a false certainty which may pose catastrophic consequences (Di Baldassarre et 
al. 2013). For instance, if one is not aware of the possible risks, prevention or miti-
gation strategies cannot be even considered.

6.3.2. Incorporating UA into decision making process

A decision making process weighs different options by social preferences. 
In this, UA of hydrological predictions can support the decision making process in 
three ways (Reichert 2012). First, UA integrates scientists’ knowledge of (un)certainty 
and possible risks and social responsibility of predictions. Providing decision makers 
with information on PU is the basis for risk evaluation and may lead to other decisions 
than without consideration of uncertainty. Second, interpreting model outputs in terms 
of a random variable instead of certain single values allows for a better analysis and 
comparison of diverse scenarios by means of diverse criteria that are not only limited 
to	a	flat	interpretation.	Third,	probabilistic	quantification	of	PU	allows	one	to	hierar-
chically order different scenarios by diverse goals and socio-economic circumstances 
and	in	accordance	with	uncertainty	levels,	e.g.	risks	of	dam	breaks	or	levees	overflo-
wing for different strategies considered. This is especially important for urbanized 
sites,	where	 the	 socio-economic	 consequences	 of	 even	moderate	 potential	 flooding	
can be severe (Aronica et al. 2013). Lastly, there is an increasing need for a better link 
between science and practice in the discipline of hydrology so that UA does not only 
remain the scientists’ issue but becomes a routine procedure in water management. 
This is already standard in ecological, medical and general risk analysis.

6.3.3. Communicating the uncertainties

Interpreting model outcomes in term of probability distributions instead of sin-
gle outcomes may pose a problem, especially for decision makers who are usually 
not statistically trained. In a classical (deterministic) approach a model provides only 
a single prediction, which is much easier to understand for most people. For instan-
ce,	the	bridge	will	be	flooded	or	not	and	the	predicted	flood	flow	can	be	’exactly’	es-
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timated.	This	information	may,	however,	lead	to	overconfidence	because	a	possible	
risk is underestimated, as shown in this thesis. Because many people feel uncomfor-
table with a probabilistic statement (Todini 2007), it has become common practice 
to communicate probabilities in terms of frequencies. For instance, one could com-
municate	a	possible	flood	risk	in	two	ways;	first,	as	an	annual	exceeding	probability	
of	1%,	and	second,	as	a	flood	flow	which	occurs	once	per	100	years	on	average.	The	
first	information	is	hardly	understandable	for	many	people.	The	second	information	
can	be	more	easily	understood	but	may	lead	to	false	confidence.	A	person	may	inter-
pret	it	as	follows;	if	the	flood	with	a	return	period	of	100	years	already	occurred	in	
his	life,	it	will	definitely	not	occur	again.	However,	an	occurrence	of	1%-flood	flows	
is theoretically possible every year. This is not understandable by people without 
a statistical or mathematical background. The information on a possible risk, even if 
complete, becomes useless if it cannot be interpreted or understood. Consequently, 
more effort should be put in a communication of uncertainties to decision makers.

6.3.4. Hydrological modelling in Central-Eastern Europe

Hydrological modelling in Central-Eastern Europe, e.g. Poland, is especially 
difficult	 because	 conditions	of	 basins	 located	 in	 this	 part	 of	Europe	 are	 expected	
to rapidly change in the future due to foreseen urban growth (EEA 2006). Thus, 
not	only	climate	but	also	social	changes	must	be	forecast,	and	these	are	difficult	to	
accurately predict. Consequently, hydrological models with parameters calibrated to 
current conditions will most likely not well predict the basin response under chan-
ged	 conditions.	Thus,	 the	 benefit	 of	 using	 complex	models	with	 numerous	 fitted	
parameters may be lost (Blöschl, Montanari 2010). In addition, due to economic 
costs and practical problems, it is usually not possible to fully cover all basins be-
ing	at	flood	risk	with	a	proper	monitoring	program;	e.g.	continuous	measurements	
of	 rainfall,	 streamflow	and	water	 level.	Especially	SUBs	remain	ungauged	due	 to 
a	relatively	low	flood	risk,	which	is	understood	as	a	compromise	between	costs	put	
into	flood	prevention	and	possible	damages	in	case	of	flooding.	To	assess	flood	risk	
and associated water quality problems under the changing environment of a basin, 
flexible	models	which	can	be	easily	adjusted	to	new	conditions	are	therefore	sought.	
For	this	reason,	simple	conceptual	models,	despite	their	limitations,	are	justified	be-
cause it is straightforward to derive their parameters and predictions for different fu-
ture scenarios i.e. under changing conditions of a basin (climate and social). The ad-
vantage of such models over structurally more complex models is a limited number 
of conceptual model parameters which can be inferred independently from recorded 
data (see above Sect. 6.1). Hence, classical model calibration can be avoided. Next, 
due to their reduced complexity, such models capture only the most important pro-
cesses involved in the RR process being modelled. Thus, the RR process is usually 
reduced	to	model	only	direct	streamflow	without	considering	other	components	of	
water	balance	such	as	ewapotranspiration	or	groundwater	flow.	Finally,	such	models	
are not data demanding. Short series of recorded input-output data gathered under 
current conditions are usually enough to improve predictions of such models and 
reduce their uncertainty due to model parameters.
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6.3.5.	Applicability	of	simplified	models	to	flooding	forecast

The proposed UA approach was tested on conceptual models with a reduced 
complexity. As shown by results from the examples, such simpler models can satis-
factorily	predict	flood	events.	Thus,	they	are	useful	for	flood	predictions	in	poorly	
gauged basins with only a few recorded input-output data available or when asses-
sing effects of future changing conditions (climate or social). However, all models 
are limited in predicting extreme conditions where unforeseen interactions occur, i.e. 
external processes that are not included in the model structure (Sikorska et al. 2013). 
If	a	model	is	flexible	enough,	its	parameters	may	be	adjusted	during	the	calibration	to	
fit	observed	patterns.	In	contrast,	if	a	model	has	a	reduced	complexity	and	flexibility,	
it may not be possible to match the calibration data. Usually, this also results in large 
PU bands that are dominated by structural limitations of hydrological models, which 
cause large systematic errors in predictions, see Sect. 6.1. This may raise concerns 
regarding the practical applications of these types of models. This uncertainty is not 
reducible with more recorded data because the model structure remains the same. 
If this is a crucial point, one should consider different models with a more complex 
structure. However, even if more details are included into the model structure, usu-
ally it is not possible to reduce all PU. Some uncertainty always remains due to the 
variability of the basin being modelled (Aronica et al. 2013). Interestingly, more 
complex models may not necessarily provide smaller uncertainties because the para-
meter uncertainty increases.

6.3.6. Perspectives of hydrological modelling

In the future, hydrological modelling is foreseen to further develop in three 
main directions: i) improving hydrological predictions under changing conditions; 
ii) improving real-time forecasting; iii) extending available data and extracting their 
content.	This	work	covers	the	first	issue	only.

Hydrological modelling under changing conditions (climate and social) of the 
basin should adapt to these conditions and therefore cannot be considered stationary 
(Montanari et al. 2013). Thus, there is a need to move from deterministic model-
ling towards stochastic modelling. This can be achieved by including an uncertainty 
element in predictions of already available deterministic models. In this, to provide 
more accurate information on possible system states, new methods should be sear-
ched for to improve model structure, model predictions and reduce their uncertain-
ties.	Alternatively,	 hydrological	modelling	may	 profit	 from	 developing	 stochastic	
models which describe the basin process as a stochastic process. Such models rely 
on statistical information and thus may better imitate stochastic patterns of the origi-
nal system. These models still require formulation of predictive uncertainty compo-
nents, as input, parameters or output.

In terms of assessing the risk arising from current hydrological conditions e.g. of 
flooding,	further	development	of	real-time	forecasting	is	required.	Model	predictions	
in	real	time	can	usually	benefit	from	less	uncertain	information	because	it	is	easier	to	
accurately predict a system state in e.g. one hour or one day than in one or ten years. 
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However, some uncertainty is always present. To assess this uncertainty, real-time fo-
recasting	requires	flexible	models	and	UA	techniques,	whose	parameters	can	be	easi-
ly adjusted due to changed conditions (Romanowicz, Beven 1998). Some techniques 
are	currently	available,	e.g.	Kalman	filter	or	particle	filter,	in	which	the	uncertainty	
in state variables is propagated through time so that the model’s estimates are conti-
nuously updated with the observed information (Kalman 1960). This is conceptually 
similar	to	Bayesian	updating	(e.g.	Chen	2003).	To	be	efficient	in	practice,	estimates	
from real-time forecasting should ideally reach an interested group in as short time 
as	possible.	In	this,	the	early	warning	system	could	greatly	benefit	from	virtual	social	
groups, which are becoming more and more popular (e.g. facebook, twitter). Nowa-
days mobile phones with internet access (’smart phones’) are becoming a standard 
device	in	citizens’	everyday	lives.	Thus,	warning	information	on	flood	risk	spread	via	
social networks can potentially reach recipients faster than e.g. radio or television.

Finally, the problem with the available data still remains unresolved. In this, 
the increasing importance of open access to information should be used to a greater 
extent. Fast developing new techniques and technologies in engineering and moni-
toring can support hydrological modelling by providing more data and of a better 
accuracy	e.g.	GIS	data,	remote	sensing	and	with	a	better	resolution	(Chormański	et	
al. 2011; Schumann et al. 2009). Attention should also be paid to extracting more 
information from already existing data. Important information on previous states of 
the	basin,	stream	or	flood	flows	or	long-term	changes	can	be	gained	from	potential-
ly unrelated disciplines, such as e.g. historical information from reports, pictures, 
newspapers. Also the rapidly increasing popularity of social networks (e.g. face- 
book, twitter) could open new possibilities to obtain meteorological and hydrologi-
cal.	With	no	additional	monetary	costs	much	can	be	gained	from	e.g.	flood	observer	
groups, which can provide detailed and accurate information on current hydrological 
states	around	the	world	such	as	water	levels,	which	in	turn	can	be	utilized	in	flood	
hazard analysis or to calibrate models a posteriori.

7. FINAL CONCLUSIONS AND RECOMMENDATIONS
7.1. Final conlusions

Many research questions were raised in the introduction. Several of those could 
be answered but some are still open and need further investigation.
1. The uncertainty analysis (UA) developed has been demonstrated to be a feasi-

ble method to assess the predictive uncertainty of rainfall-runoff (RR) models 
in small urbanized basins (SUBs). The UA is based on the Bayesian inference. 
The UA provides uncertainty bands that have a probabilistic interpretation. Mo-
reover, it allows one to pinpoint the relevance of individual sources contribu-
ting to the total predictive uncertainty (PU). The approach is broadly applicable 
to studies in other basins and with other hydrological models. The main limi-
tations arise from the need to formally describe errors of a hydrological model 
and consequently to formulate the likelihood function.

2. Errors of a hydrological model have been shown to be heavily autocorrelated. 
This correlation cannot be represented by a classical independent Gaussian error 
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model, which has been typically applied in hydrological modelling. In this regard, 
the autoregressive lumped error model has proven to be a promising alternative.

3. The input rainfall uncertainty has been demonstrated to be strongly time-depen-
dent. To capture this variability, an approach with time dependent parameters 
is needed. In this work, the adopted rainfall multipliers approach has been de-
monstrated to be practical in describing errors of input rainfall to RR models.

4. The	output	uncertainty	of	RR	models,	which	 is	 streamflow,	has	been	explo-
red by the parameter uncertainty of the corresponding rating curve (RC). This 
approach has been demonstrated to be useful to assess the contribution of the 
output	streamflow	uncertainty.	However,	it	does	not	allow	for	direct	modelling	
of	streamflow.

5. The practical value of quantifying prediction uncertainties lies in supporting 
water management through providing decision makers with a broader basis for 
scenarios and strategies analysis. In addition, quantifying individual uncertain-
ty source contributions allows one to plan strategies for reducing the predictive 
uncertainty. Reduction of the predictive uncertainty is generally limited due to 
the model structure and availability and information content of input-output 
data to infer model parameters. Incorporating UA into practical applications re-
mains, however, a challenging task. Most of all, this is because many people are 
not statistically trained to interpret and understand the output information from 
UA. More efforts in teaching decision makers and lay people on how to handle 
and understand this additional dimension of information would be desirable.

6. To predict the consequences of future (climate or social) changes, one has to rely 
on models in which parameters can be easily adjusted. Unfortunately, complex 
models usually require calibration against observed input-output data in order to 
provide reliable predictions. This cannot be achieved for future unknown con-
ditions.	Models	with	a	simplified	structure	therefore	remain	an	attractive	option	
because they can provide predictions based only on short-term data. Their pre-
dictions, however, are usually connected with high predictive uncertainty.

7. Simplified	models	also	often	remain	the	only	feasible	tool	to	provide	hydrolo-
gical predictions in Central-Eastern Europe. Because this part of Europe is at 
high	risk	of	future	social	changes	such	as	urban	growth,	it	is	difficult	to	foresee	
future basin conditions. Moreover, the existing monitoring programs do not 
cover	all	basins	at	risk	of	flooding	or	water	quality	problems	and	is	usually	li-
mited to infrequent measurements only. All this makes hydrological modelling 
in Central-Eastern Europe especially challenging.

8. The uncertainty of RR predictions in Sluzew Creek has been found to be large 
and dominated by hydrological model structure uncertainty and input variable 
uncertainty	(rainfall).	The	first	source	cannot	be	effectively	reduced	by	gathe-
ring more input-output data if the model structure remains untouched. If it is 
a critical point, the hydrological model should be improved. Alternatively, in-
put rainfall uncertainty could be reduced with more accurate information on 
observed rainfalls. Output and parameter uncertainties were demonstrated to be 
less important in this basin.
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7.2. Recommendations for future research

In	the	course	of	this	work,	several	simplifications	and	assumptions	were	made	
and some issues were neglected. These issues require further research.
•	 Structure errors of hydrological models have been suggested to be an important 

source	of	 the	 total	 predictive	uncertainty	of	 simplified	models.	However,	 its	
direct	quantification	was	not	possible.	Thus,	further	research	should	aim	at	an	
explicit treatment of this error and its decomposition from other uncertainty so-
urces. A promising approach to formally describe model bias (model structure 
error and input error) has been recently tested (Del Giudice 2013; Honti et al. 
2013). This will require an explicit treatment of all uncertainty sources.

•	 Also the high contribution of the input uncertainty in RR modeling needs fur-
ther investigation. In this regard, it would be interesting to investigate how 
much the input rainfall uncertainty can be reduced with more precise rainfall 
information such as from radio link networks or radar data. In particular, one 
could explore how the rainfall information from radio links can reduce the total 
predictive uncertainty of RR predictions in Sluzew Creek. Within this approach 
observed rainfall is computed from the information on radio links attenuation 
due to rainfall drops impact. To extract rainfall information from radio link ne-
tworks, a promising technique has been already developed and is being tested 
(Bianchi et al. 2013).

•	 The small contribution of the output uncertainty represented by the RC para-
meters in the total predictive uncertainty for RR models also requires further 
research. The relevance of the entire RC method uncertainty in the RR model 
predictions uncertainty could be especially interesting for further investigation. 
A promising approach to quantify the RC method uncertainty has been develo-
ped (Claps, Di Baldassarre 2011). To include this uncertainty in hydrological 
model predictions, further investigation is needed.
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Summary
Analiza	niepewności	prognozy	wezbrań	opadowych	w	małej	zlewni	zurbanizowanej:	

W	celu	oceny	wpływu	zmieniających	sie	warunków	zlewni	na	ryzyko	powodziowe	i	jakość	
wody	oraz	opracowania	strategii	łagodzących,	planiści	i	decydenci	potrzebują	prognoz	mode-
li	hydrologicznych.	Prognozy	te	obarczone	są	zwykle	istotną	niepewnością	o	różnym	źródle. 
W	ramach	tej	pracy	opracowano	kompletną	Bayesowską	metodykę	do	analizy	niepewności	
w	modelowaniu	wezbrań	opadowych	w	małych	zlewniach	zurbanizowanych.	Metodyka	ta	
jest	niezależna	od	charakterystyk	zlewni	badawczej	i	modeli	hydrologicznych.	Oryginalno-
ścią	pracy	jest	połączenie	innowacyjnych	metod	do	opisania	niepewności	wejścia,	parame-
trów	modelu,	struktury	modelu	i	wyjścia	modelu.	Przydatność	analizy	niepewności	wykaza-
no	za	pomocą	dwóch	praktycznych	badań,	w	których	modelowano	natężenie	przepływu	oraz	
stan	wody,	i	zweryfikowano	na	zlewni	Potoku	Służewieckiego	w	Warszawie.	Wyniki	analizy	
pokazały,	iż	niepewność	predykcji	w	tej	zlewni	jest	duża	i	zdominowana	przez	niepewność	
wejścia	i	struktury	modelu.	Głównymi	ograniczeniami	metody	jest	konieczność	formalnego	
opisania	błędów	struktury	modelu	oraz	sformułowanie	funkcji	wiarygodności	niezbędnej	do	
przeprowadzenia	Bayesowskiej	analizy	niepewności.

Summary100

monography.indd   100 2014-10-08   09:01:27



List of figures
Fig. 2.1. Basin versus model; reproduced from Wagener et al. 2004
Fig. 2.2. Runoff in a rural and an urbanized basin.
Fig. 2.3. Deterministic (left) vs. probabilistic (right) modelling.
Fig. 2.4. Example	of	the	significance	of	uncertainty	estimation	for	the	house	located	in	floodplains
Fig. 2.5. The progressive transition between determinism and total ignorance
Fig. 3.1. Schema of possible uncertainty sources in hydrological modelling
Fig.	3.2.	 Spatial	variation	of	a	rainfall	field	over	a	city
Fig. 3.3. Example of prior and posterior pdf for basin area
Fig. 3.4. Uncertainty intervals
Fig. 3.5. Idea of the rainfall multipliers approach
Fig. 3.6. Error model of the input uncertainty (R) and stochastic rainfall-runoff (RR) model. 
Fig. 3.7. Representation of the rainfall-runoff (RR) model calibration problem
Fig. 3.8. Representation of the rainfall-water level (RL) model
Fig. 3.9. A scheme of the Markov Chain Monte Carlo sampling
Fig. 3.10. Monte Carlo simulations
Fig. 3.11. Example of the MCMC chains
Fig. 4.1. Overview of the Sluzew Creek basin location within Warsaw
Fig. 4.2. Gauges and their contributing areas for six locations
Fig. 4.3. Wyscigi Pond cross-section
Fig. 4.4. Concept of a basin within the Nash’s model
Fig.	5.1.	 Correlation	between	N	and	k	for	five	empirical	methods
Fig. 5.2. Prior and posterior parameter distributions – example I
Fig. 5.3. Posterior parameters correlations in example I
Fig. 5.4. Prior and posterior distributions of rainfall multipliers 
Fig. 5.5. Diagnostic plot of rainfall multipliers
Fig. 5.6. Diagnostic plot of residuals in example I
Fig.	5.7.	 95%	PI	for	predicted	streamflows	in	the	Sluzew	Creek
Fig.	5.8.	 Influence	of	the	input	uncertainty	in	the	Sluzew	Creek	streamflow	predictions	
Fig. 5.9. Prior and posterior parameter pdfs
Fig. 5.10. Posterior parameters correlations in example II
Fig. 5.11. Diagnostic plot of residuals in the example II
Fig. 5.12. 95% PIs for predicted water levels in the Sluzew Creek
Fig. 5.13. Relevance of RC parameters uncertainty of predicted water levels in the Sluzew Creek

List of tables
Table 4.1. Methods to derive IUH characteristics and Nash model parameters
Table 5.1. Prior distribution for the Sluzew Creek basin
Table 5.2. Nash’s model parameters derived empirically for the Sluzew Creek basin and their 
prior distribution

List	of	figures	and	tables 101

monography.indd   101 2014-10-08   09:01:27



Glossary of abbreviations
B  model Bias (model structure and input uncertainty) 
E  model errors (model structure, input and measurements uncertainty) 
ε		 measurements	(output)	uncertainty	
Em  model errors without input uncertainty (model structure and measurements uncertainty)
EP  effective precipitation 
g forward transformation
g-1 backward transformation
i.i.d.  identically and independently distributed (errors)
l  predicted deterministic water level 
L predicted stochastic water level
LEM  lumped error model 
Lo  observed water level 
LR−1  inverse of water level-runoff (model) 
M  deterministic hydrological model 
q		 predicted	deterministic	streamflow	
Q	 predicted	stochastic	streamflow	
Qo		 observed	streamflow	
p  probability distribution 
P  probability
P  precipitation 
pdf probability density function 
Po  observed input precipitation posterior posterior probability distribution
prior  prior probability distribution 
PU  predictive uncertainty 
Px  transformed observed input precipitation 
R  input rainfall error (model) 
RC  rating curve (model) 
RL  rainfall-water level (model) 
RR  rainfall-runoff (model) 
SUB  small urbanized basin 
θ		 model	parameters
UA  uncertainty analysis 
X  model input variable 
Xo  observed model input variable 
Xx  transformed observed model input variable 
y  predicted deterministic model output 
Y  stochastic model output variable 
Yo  observed model output
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